
This paper is included in the Proceedings of the 
13th USENIX Symposium on Operating Systems Design 

and Implementation (OSDI ’18).
October 8–10, 2018 • Carlsbad, CA, USA

ISBN 978-1-939133-08-3

Open access to the Proceedings of the 
13th USENIX Symposium on Operating Systems 

Design and Implementation 
is sponsored by USENIX.

Neural Adaptive Content-aware  
Internet Video Delivery

Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo Shin, and Dongsu Han, KAIST

https://www.usenix.org/conference/osdi18/presentation/yeo



Neural Adaptive Content-aware Internet Video Delivery

Hyunho Yeo Youngmok Jung Jaehong Kim Jinwoo Shin Dongsu Han
KAIST

Abstract
Internet video streaming has experienced tremendous

growth over the last few decades. However, the quality

of existing video delivery critically depends on the band-

width resource. Consequently, user quality of experience

(QoE) suffers inevitably when network conditions become

unfavorable. We present a new video delivery framework

that utilizes client computation and recent advances in

deep neural networks (DNNs) to reduce the dependency

for delivering high-quality video. The use of DNNs en-

ables us to enhance the video quality independent to the

available bandwidth. We design a practical system that

addresses several challenges, such as client heterogeneity,

interaction with bitrate adaptation, and DNN transfer, in

enabling the idea. Our evaluation using 3G and broadband

network traces shows the proposed system outperforms

the current state of the art, enhancing the average QoE

by 43.08% using the same bandwidth budget or saving

17.13% of bandwidth while providing the same user QoE.

1 Introduction
Internet video has experienced tremendous growth over

the last few decades. Recent market reports indicate peo-

ple around the world watch 5.75 hours of online video

per week on average [10] and video traffic is expected to

quadruple in the next five years [26, 63]. Current video

delivery infrastructure has been successful in handling the

scalability challenges with two key technologies. First,

at the server side, distributed computing technologies en-

abled content delivery at Internet scale. Second, at the

client side, adaptive bitrate (ABR) streaming addressed

the problem of bandwidth heterogeneity and its variations

across time and space. Techniques at both ends evolved

over time to optimize user quality of experience (QoE)

as it ultimately impacts the revenue of various stakehold-

ers [22, 27, 77].

However, the limitation of existing content distribution

networks (CDNs) is that its quality heavily depends on

the bandwidth between servers and clients. When the

bandwidth resource becomes scarce, user QoE suffers

directly [43, 47]. Bitrate adaptation has been the primary

tool to relax the problem [52]. Nevertheless, its sole

reliance on network resource is a fundamental limitation.

Inspired by the ever-increasing clients’ computational

power and recent advances in deep learning, this paper

identifies an alternative and complementary approach to

enhancing the video quality. We apply a deep neural net-

work (DNN)-based quality enhancement on video content
utilizing the client computation to maximize user QoE. In

particular, a deep learning model learns a mapping from

a low-quality video to a high-quality version, e.g., super-

resolution. This enables clients to obtain high-definition

(e.g., 1080p) video from lower quality transmissions, pro-

viding a powerful mechanism for QoE maximization on

top of bitrate adaption.

Leveraging client computation via DNNs impacts the

server/client system and introduces a number of non-

trivial challenges:

◦ First, the CDN servers have to provide a DNN model

for the content they provide. However, it is difficult to

guarantee the test performance of DNN’s predictions.

It is especially unreliable for unseen/new content, pre-

senting a significant barrier to deployment.

◦ Second, client devices are heterogeneous. Their com-

putational power varies widely and may even exhibit

temporal variation due to multiplexing. Nevertheless,

DNN-based quality enhancement must occur at real-

time to support online video streaming.

◦ Finally, the DNN-based quality enhancement has a

cascading effect on ABR-based QoE optimization. The

quality now depends on the availability of DNNs at

the client in addition to the available bandwidth. Thus,
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existing ABR algorithms must reflect the changes.

This paper presents NAS, the first video delivery frame-

work that applies DNNs on video content using client’s

computational power to maximize user QoE. We present

a system design that runs on top of Dynamic Adaptive

Streaming over HTTP (DASH) framework. NAS ad-

dresses the challenges by introducing new system designs.

To guarantee reliable quality enhancement powered by

DNN, it takes a content-aware approach in which a DNN

is trained for each content separately. The idea is to lever-

age the DNN’s overfitting property and use the training ac-

curacy to deliver predictable high performance, instead of

relying on the unpredictable test accuracy. Next, to meet

the real-time constraints on heterogeneous environments,

we use multiple scalable DNNs that provide anytime pre-

diction [24, 36]. Such DNN architectures can adaptively

control their computational cost given resource budget.

NAS clients choose a DNN (from multiple options) that

best fits their resources and adapt to temporal variations

in computing power at each time epoch. The scalable

DNN also enables the use of a partially downloaded DNN,

bringing an incremental benefit in downloading a DNN

model. Finally, to reconcile the ABR-based QoE opti-

mization and DNN-based quality enhancement, we devise

a content enhancement-aware ABR algorithm for QoE

optimization. To this end, we integrate our design into

the state-of-the-art ABR algorithm [52] that uses rein-

forcement learning [68]. The algorithm decides when to

download a DNN model and which video bitrate to use

for each video chunk.

We evaluate NAS using a full system implementation.

Our evaluation on 27 real videos and 17.8 hours of real-

world network traces [8] using six different GPU models

shows NAS delivers substantial benefit in a wide range

of settings and is able to meet the real-time constraint on

desktop class GPUs of varying capacity. In particular, it

improves user QoE between 63.80-136.58% compared

to BOLA [66] used in DASH [4] and between 21.89-

76.04% compared to Pensieve, the state-of-the-art ABR

design. Finally, we provide in-depth performance analysis

of individual system components.

In summary, we make three key contributions:

◦ End-to-end video delivery system: NAS is an end-to-

end video streaming system that integrates the content-

aware approach, DNNs for super-resolution, scalable

anytime prediction, and mechanisms for handling de-

vice heterogeneity on top of an existing adaptive stream-

ing framework.

◦ Use of DNNs in adaptive streaming: NAS is the first

system to apply super-resolution DNNs over video con-

tent in the context of adaptive streaming. From the
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Figure 1: Growth of GPU’s processing power

machine learning (ML) side, we are the first to apply

DNN-streaming, super-resolution, and anytime predic-

tion to adaptive streaming.

◦ Content-aware DNN: NAS streams video along with

the corresponding content-aware DNN to its clients.

This is a key enabler and a novel component of NAS,

which can be also viewed as a new approach to video

coding.

2 Motivation and Goal
Traditional approaches to improving video stream quality

include: using better codecs [11, 12]; optimizing adaptive

bitrate algorithms [20,39,42]; choosing better servers and

CDNs [17, 50, 74]; and using coordination among clients

and servers through a centralized control plane [51, 54].

These approaches focus on how to best utilize the network

resource, but suffer from two common limitations.

Under-utilization of client’s computation. Market re-

ports [10, 57] indicate the majority of users watch video

primarily on PCs, which have significant computation

power. Mobile devices, which is the next popular plat-

form, are also equipped with power-efficient graphic pro-

cessing units (GPUs) [29]. Figure 1 shows the expo-

nential growth in GPU’s computing power over time on

mobile devices and desktop PCs. Latest mobile devices

even have dedicated hardware for neural processing [7].

However, the current video delivery infrastructure under-
utilizes client’s computational power. With their growing

computational capacity and ever-increasing demand for

bandwidth, we envision a video delivery system in which

clients take an active role in improving the video quality.

Limitation of current video coding. Video episodes of-

ten contain redundancy that occurs at large timescales.

For example, consider a popular sports game (e.g., NBA

finals) watched by millions of people. Same objects (e.g.,

balls and players) and scenes (e.g., basketball court) show

up repeatedly. Similarly, redundancy is also found within

episodes of a TV show, games in a sports league, and

videos from the same streamers. Such frequently reoccur-

ring high-level features contain valuable information that

can be leveraged for video coding. However, standard
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video coding, such as MPEG and H.26x, only captures

spacial and short-term redundancy, lacking any mech-

anisms to exploit motion picture’s high-level features.

Within a group of pictures (GOP), inter-frame coding en-

codes the difference between adjacent frames to compress

a motion picture [30]. However, a GOP is typically on the

order of seconds for online video [13], making it impossi-

ble to capture redundancy that occurs at large timescales.

As long as codecs compress video only within a GOP

(arguably a fundamental constraint for streaming), using

sophisticated codecs would not completely close this gap.

Motivated by this, we envision a video delivery system

that exploits such redundancy by capturing the high-level

features and applies additional client computation to aug-

ment the limitation of traditional video encoding. To this

end, we utilize DNNs that abstract meaningful features

from a low-level representation of data [23].

System goal. Our goal is to design a practical system

that augments the existing infrastructure to optimize user

QoE. As the first step, we consider servicing on-demand

videos, as opposed to live streams, and using personal

computers that have desktop-class GPUs. We propose a

redesign of the video delivery infrastructure to take advan-

tage of client computation to a greater degree. For qual-

ity enhancement, we utilize super-resolution that takes

low-quality video as input and generates an “up-scaled”

version. We choose super-resolution because significant

advances have been made recently [28, 45, 49]. While

we scope our study to desktop-class GPUs and super-

resolution, we believe the framework is generic enough to

accommodate different types of DNN models and devices.

3 Background and Related Work
Adaptive streaming (e.g., Apples HLS [1], DASH [2])

is designed to handle unpredictable bandwidth variations

in the real world. Video is encoded into various bitrates

(or resolutions) and divided into fixed length chunks, typi-

cally 2 – 10 seconds. An adaptive birate algorithm (ABR)

decides the bitrate for each video chunk. Traditional ABR

algorithms select bitrates using heuristics based on the

estimated network bandwidth [42] and/or the current size

of the client-side playback buffer [66]. MPC [77] and

Pensieve [52] demonstrate that directly optimizing for

the desired QoE objective delivers better outcomes than

heuristics-based approaches. In particular, Pensieve uses

deep reinforcement learning and learns through “observa-

tions” how past decisions and the current state impact the

video quality. Oboe [21] dynamically adjusts the ABR

parameters depending on the network conditions consult-

ing the offline pre-computation result. Although these

algorithms successfully cope with bandwidth variations,

they consider neither the effect of client-side quality en-

hancement nor the dynamics of simultaneously streaming

a DNN and video chunks.

Super-resolution recovers a high-resolution image from

a single or multiple lower resolution image(s). Super-

resolution has been used in a variety of computer vi-

sion applications, including surveillance [78] and medical

imaging [65], where the original high-quality image/video

is not available. Recent studies use DNNs [28, 45, 49]

to learn low-resolution to high-resolution mapping and

demonstrate a significant performance gain over non-

DNN approaches [25, 64]. In particular, MDSR [49] is

a state-of-the-art DNN that integrates the residual neural

network architecture [34] and supports multi-scale inputs.

In NAS, we apply super-resolution on top of adaptive

streaming to improve user QoE by enhancing low-quality

videos at the client side.

Scalable DNN is an emerging type of DNN designed to

dynamically adapt to computational resource constraints,

enabling anytime prediction [36]. A shallow and a deep

network are used in resource-constrained and -sufficient

environments respectively [24, 36]. ISResNeXt [48] alter-

natively uses a thin and a wide network that adapts to the

width (or channels) of a DNN. Scalable DNN has been

applied primarily to image classification/detection tasks.

NAS applies anytime prediction to super-resolution and

uses it delivering incremental quality enhancement in a

streaming context.

DNN-based media compression. Recent studies [18,

61, 71] have shown DNN-based image compression out-

performs traditional image codecs, such as JPEG2000

and WebP. The benefit over conventional codecs comes

mainly from two aspects: 1) directly optimizing for the

target quality metric and 2) adapting the codec configu-

ration based on the image rather than using a fixed con-

figuration [61]. Applying this to video, however, involves

significant challenges including the problem of reducing

inter-frame redundancy across DNN-encoded images. A

recent work [72] performs both I-frame compression and

frame interpolation using DNNs. However, the DNN-

based video compression is still at its early stage and only

offers “comparable performance to MPEG-2” and falls

short in delivering real-time decoding [72]. NAS aims to

augment existing video delivery using DNN—it applies

super-resolution DNNs on top of traditional video codecs

by applying quality enhancements frame-by-frame.

Video processing systems. Back-end video processing

systems have been of growing importance due to the scale

required for video encoding. Studies have reported that

latency for fast interactive sharing, system efficiency in

encoding, scalability and fault tolerance are major issues

[31,37,70]. SVE [37] presents a backend system for video
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(Content type – 1st row: Game [15], 2nd row: Entertainment [14], 3rd row: News [16])

processing used in Facebook. ExCamera [31] uses mas-

sive parallelism to enable interactive and collaborative

editing. They focus on solving distributed system prob-

lems within a datacenter without changing the clients,

whereas we focus on the division of work between the

servers and clients.

Studies on video control plane [32, 41, 44, 51] identify

spatial and temporal diversity of CDNs in performance

and advocate for an Internet-scale control plane which

coordinates client behaviors to collectively optimize user

QoE. Although they control client behaviors, they do not

utilize client computation to directly enhance the video

quality.

4 Key Design Choices
Achieving our goal requires redesigning major compo-

nents of video delivery. This section describes the key

design choices we make to overcome practical challenges.

4.1 Content-aware DNN
Key challenge. Developing a universal DNN model that

works well across all Internet video is impractical be-

cause the number of video episodes is almost infinite.

A single DNN of finite capacity, in principle, may not

be expressive enough to capture all of them. Note, a

fundamental trade-off exists between generalization and

specialization for any machine learning approach (i.e.,

as the model coverage becomes larger, its performance

degrades), which is referred to as the ‘no free lunch’ the-

orem [75]. Even worse, one can generate ‘adversarial’

new videos of arbitrarily low quality, given any existing

DNN model [38, 58], making the service vulnerable to

reduction of quality attacks.

NAS’ content-aware model. To tackle the challenge, we

consider a content-aware DNN model in which we use a

Start End
Large timescale redundancy

Short timescales

: Intra-frame coding
: Inter-frame coding

Group of Pictures (GOP)

H.26x, VPx

Input
Output

Update
Target

Recover high-quality redundancy
(e.g., Super-resolution)

DNN

Content-aware DNN

Figure 3: Content-aware DNN based video encoding

different DNN for each video episode. This is attractive

because DNNs typically achieve near-zero training error,

but the testing error is often much higher (i.e., over-fitting

occurs) [67]. Although the deep learning community

has made extensive efforts to reduce the gap [40, 67],

relying on the DNN’s testing accuracy may result in un-

predictable performance [38, 58]. NAS exploits DNN’s

inherent overfitting property to guarantee reliable and

superior performance.

Figure 2 shows the super-resolution results of our

content-aware DNN and a content-agnostic DNN

trained on standard benchmark images (NTIRE 2017

dataset [19]). We use 240p images as input (d) to the

super-resolution DNNs to produce output (b) or (c). The

images are snapshots of video clips from YouTube. The

generic, universal model fails to achieve high quality con-

sistently over a variety of contents—in certain cases, the

quality degrades after processing. In §5.1, we show how

to design a content-aware DNN for adaptive streaming.

The content-aware approach can be seen as a type of

video compression as illustrated in Figure 3. The content-

aware DNN captures redundancy that occurs at large time

scales (e.g. multiple GOPs) and operates over the entire

video. In contrast, the conventional codecs deals with re-
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Model name Compute capacity
(Single precision) Price

GTX 1050 Ti 1.98 TFLOPS $139

GTX 1060 3.86 TFLOPS $249

GTX 1070 5.78 TFLOPS $379

GTX 1070 Ti 7.82 TFLOPS $449

GTX 1080 8.23 TFLOPS $559

GTX 1080 Ti 10.61 TFLOPS $669

Titan Xp 10.79 TFLOPS $1,200

Table 1: Nvidia’s desktop GPU (Geforce 10 series)

dundancy within a frame or between frames within a GOP.

In NAS, we demonstrate the new encoding scheme using

per-video super-resolution DNNs. However, we believe

the content-aware approach can be applied to a series of

videos (of similar content) and extended to work with

different types of DNNs, such as frame interpolation [56],

as discussed in our position paper [76].

4.2 Multiple, Scalable DNNs
Key challenge. The available capacity of computing

changes across time and space because of heterogeneity

of client devices, changes in workloads, and multiplex-

ing. Table 1 shows even within the desktop-class GPUs

the computational power varies up to 5.68 times. Never-

theless, real-time inference is required for online video

streaming—the DNN inference has to be at least as fast

as the playback rate. However, existing super-resolution

DNNs [28, 45, 49] require a fixed amount of computing

power and cannot adapt to time-varying capacity. Thus,

using a single DNN either under-utilizes client’s GPU or

does not meet the real-time requirement.

NAS’ multiple, scalable DNN design. To tackle the

challenge, NAS offers multiple DNNs and let clients dy-

namically choose one that fits their resource. Similar to

multiple bitrates that adaptive streaming offers, we pro-

vide a range of DNN options that differ in their inference

time (or computational requirements). NAS servers pro-

vide multiple DNN specifications as part of the video

manifest file. We provide a light-weight mechanism that

does not require clients to download the DNNs for choos-

ing the right DNN from available options.

However, using multiple DNNs introduces another

challenge. Because the size of DNN grows proportional

to its computation requirement, DNNs designed for high-

end GPU devices can be very large (a few MBs). It can

take a long time to download and utilize the DNN. To

address the issue, we design a scalable DNN that enables

a client to utilize a partially downloaded model in an in-

cremental fashion. The scalable DNN consists of multiple

bypass-able intermediate layers, enabling a partial DNN

without the intermediate layers to generate the output as

shown in Figure 4. In addition, the design naturally ac-

commodates temporal variation in computational power

due to multiplexing. When the computational resource is

abundant, clients can use all layers, otherwise they can op-

portunistically bypass any number of intermediate layers,

enabling anytime prediction [24, 36, 48]. Finally, the use

of multiple scalable DNNs allows each device to benefit

from partially downloaded DNNs and provides the same

level of temporal adaptation regardless of the device’s

computational power. §5.2 presents the details of scalable

DNNs.

4.3 Integrated ABR

Key challenges. As NAS uses per-video DNN, a client

must download a DNN from a server to benefit from DNN-

based quality enhancement. However, DNN downloads

also compete for the bandwidth with the video stream

itself. As a result, aggressively downloading the DNN

model may degrade user QoE. At the same time, a client

may benefit from an early DNN download because it can

receive the quality enhancement early on. Because there

exists a conflict, a careful decision making as to when and

how to download the DNN is critical.

NAS’ bitrate adaptation integrates the decision to down-

load a DNN with bitrate selection for QoE maximization.

It considers three additional factors that impact user QoE:

1) To benefit from quality enhancement, a client-side

DNN must be downloaded first; 2) a partially downloaded

DNN improves quality in proportion to the amount down-

loaded; and 3) DNN chunk downloads compete for band-

width with video chunk downloads.

To solve the non-trivial problem, we leverage reinforce-

ment learning [52] and generate an ABR algorithm that

integrates the decision to download a DNN model. For

this, we divide the DNN model into fixed-size chunks and

train an RL network that outputs a decision (i.e., whether

to download a video or a DNN chunk) using as input

the current state (e.g., throughput measurement, playback

buffer occupancy, the number of remained video chunks)

and its history. We train the RL network using a large

training set consisting of real network traces [9, 60].

The decision to use RL brings a number of benefits: 1)

it allows NAS to directly optimize for any target QoE met-

ric, while accounting for the benefit of DNN-based quality

enhancement; 2) RL balances multiple interacting factors,

such as bandwidth variations, bandwidth sharing between

video and DNN chunks, and quality enhancement of par-

tial DNNs, in a way that optimizes the QoE; and 3) it

naturally accommodates the use of multiple DNNs by

encoding the DNN type in the RL network. §5.3 presents

the details of the integrated ABR.
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5 System Design
NAS is implemented on top of current HTTP adaptive

streaming, standardized in DASH [2]. We start by ex-

plaining the key differences in how the system operates.

New video admission (server-side processing). As in

DASH, when a video clip is uploaded, it is encoded at

multiple bitrates and divided into chunks. In addition,

the server trains content-aware DNNs for the video for

client-side quality enhancement (§5.1). It then associates

the DNNs with the video by placing their URLs in the

manifest file along with DNN specifications (§5.2).

Client behavior. A client’s video player first downloads

a manifest file, which contains a list of available DNNs

for the video. The client then selects one of them that fits

its computing power. The client’s DNN processor uses a

light-weight mechanism to choose the best available one

that fits its resource (§5.2). The player then downloads

the selected DNN or video chunks following the decision

given by the integrated adaptive bitrate (ABR) algorithm

(§5.3). When a DNN chunk is downloaded, the player

passes it to the DNN processor, and the processor loads

the (partial) DNN on the client’s computing device (e.g.

GPU). When a video chunk is downloaded, the player

keeps it in the playback buffer and the chunk becomes

ready for immediate playback. The player then oppor-

tunistically passes video chunks in the playback buffer to

the DNN processor for quality enhancement along with

their associated playback time, which indicates the dead-

line for neural processing. When the DNN processor

finishes processing a chunk, it replaces the original chunk

in the playback buffer. Finally, the quality enhanced video

chunk is played.

Client-side neural processing. The DNN processor ini-

tializes the DNN as DNN chunks arrive. The DNN we use

performs quality enhancement on a per-frame basis for

super-resolution. Thus, the DNN processor first decodes

a video chunk into frames. The DNN processor then

applies the super resolution DNN. The resulting frames

are then re-encoded to video chunks which replace the

original chunks in the playback buffer. The decoding,

super-resolution, and encoding phases are pipelined and

parallelized to minimize the latency (See §7.5 for details).

5.1 Content-aware DNN for DASH
Applying DNN to adaptive streaming. Standard DNN

architectures are not designed for adaptive streaming

which introduces specific requirements. First, because

adaptive streaming uses multiple resolutions, DNN must

be able to take multiple resolutions as input. Second, the

DNN inference has to take place in real-time. Finally,

DNN should sacrifice its inference quality as little as pos-

sible in meeting the first two requirements. The inference

time can be reduced at the cost of quality by reducing the

number of layers and/or the number of channels (a set of

features) in each layer. Such down-scaling also decreases

DNN’s network footprint. Thus, we must strike a balance

between the tradeoff in quality and size, while meeting

the real-time requirement.

Using a super-resolution network. Our system extends

MDSR [49], a state-of-the-art super-resolution network.

As shown in Figure 4, MDSR supports multi-scale super-

resolution (x2, x3, x4) in a single network, while sharing

the intermediate layers to reduce the footprint. The in-

put resolution drastically affects the inference time of

MDSR. For example, even on a flagship desktop GPU

(e.g., Nvidia Titan Xp), a 720p input only delivers 3.23

frames per second, whereas a 240p image is processed

nearly in real-time at 28.96 frames per second. Thus, to

meet the real-time constraint for the highest resolution,

one has to downscale the network size.

However, due to the shared layer design, this degrades

the quality of all resolutions uniformly, making the lower

resolution suffer from significant quality degradation. To

avoid the limitation, we use a separate network for each

resolution (Figure 4), trading in the total size of the DNN

for inference quality. For each DNN, we fix the number
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of layers that represents the capacity to adapt to temporal

variation in computing power (§5.2). Then, we take the

maximum number of channels, independently, for each

resolution, that satisfies the real-time constraint. The re-

sulting DNN configuration and size we use for our evalua-

tion are listed in Table 2. The footprint of the ‘Ultra-high’

DNN is 2,145 KB, which is about the size of a single

1080p (four-second) video chunk (4.8 Mbps) from our

evaluation. The size of the ‘Low’ DNN is only about half

the size of a 240p chunk (400 Kbps). While we use NAS-

MDSR and specific settings for evaluation, NAS design is

not bound to any specific DNNs but accommodates their

evolution.

Training content-aware DNNs. The training data is

pairs of a low resolution (e.g., 240p, 360p, 480p, 720p)

and the original highest resolution (e.g., 1080p) image.

We update the DNN parameters to minimize the differ-

ence between the DNN’s output and the target high res-

olution image. The training cost is of “one-time” and is

amortized across the total watch time of the video episode.

Nevertheless, for CDNs that deliver many video episodes,

the total computational cost may be high. To reduce the

cost of training, we apply the fine-tuning strategy of a

transfer learning type. Namely, we first train a generic

DNN model using a popular standard benchmark [19].

We then train the content-aware DNN model on each

video episode with its weights initialized as those from

the generic model. This reduces the computation cost in

training by 5-6x, while achieving similar quality enhance-

ment compared to random initialization [33].

5.2 Adaptation to Computational Power
This section describes two mechanisms (multiple DNNs

and anytime prediction) that clients use to adapt to their

computational capacity to deliver real-time quality en-

hancement. For each technique, we describe the enabling

DNN design and explain the client-side dynamic adapta-

tion logic.

Providing multiple DNNs (server-side). As discussed

in §4.2, we provide multiple DNN configurations that vary

in quality and computational requirements to support a

broad range of GPUs. Similar to GPU’s rendering quality

options, we provide four quality levels of DNNs: ‘Low’,

‘Medium’, ‘High’, ‘Ultra-high’. Thus, we have a DNN

per quality per input-resolution, as shown in Table 2. Fi-

nally, the server records the available DNN configurations

on a manifest file, including the DNN name and level,

input resolution, the number of layers, and the number of

channels.

Choosing a DNN from multiple options (client-side).
Clients test-run the DNN options to choose the one that

gives the best quality improvement and delivers real-time

Input DNN Quality Level
Resolution Low Medium High Ultra-high

240p
20, 9

43 KB

20, 21

203 KB

20, 32

461 KB

20, 48

1026 KB

360p
20, 8

36 KB

20, 18

157 KB

20, 29

395 KB

20, 42

819 KB

480p
20, 4

12 KB

20, 9

37 KB

20, 18

128 KB

20, 26

259 KB

720p
6, 2

2 KB

6, 7

5 KB

6, 16

17 KB

6, 26

41 KB

Table 2: DNN configurations for NAS-MDSR
(#Layer, #Channel, Size)

performance. A naive way to measure the inference time

of DNNs is downloading all DNNs at the client device.

However, this consumes large bandwidth (several MBs)

and unnecessarily delays video streaming, ultimately de-

grading user QoE. To streamline the process, NAS pro-

vides enough information about the DNN options (i.e.,

the number of layers and channels) in the manifest file

for clients to reconstruct mock DNNs without download-

ing the DNNs. Using the DNN configuration defined in

the manifest file, clients generate DNNs initialized with

random weights and run them on their GPUs. Finally,

the clients select the largest (highest-quality) DNN that

runs in real-time—the client does not need actual weights

here because a larger DNN provides better quality. With

four DNN options, the client-side test-run takes between

1.64-3.40 seconds depending on a GPU model. Thus, the

client can decide which DNN to use early on without

downloading any DNN.

Scalable DNN and anytime prediction (server-side).
Our scalable DNN architecture enables the client to utilize

a partially downloaded DNN and adapt to time-varying

computational power. Utilizing partial DNNs provides

incremental benefit as the download progresses. This

especially benefits the QoE at the beginning of a video

because the full DNN of a few MBs cannot be transferred

instantly. In addition, the scalable architecture enables

anytime prediction allowing us to adapt to client’s avail-

able computational power that may change unexpectedly.

For this, we modify the DNN architecture and its train-

ing method. The DNN’s intermediate layers consist of

multiple residual blocks [49] each of which consists of

two convolutional layers. We allow bypassing consec-

utive intermediate blocks during inference. To enable

bypassing, we add direct connections from intermediate

blocks to the final layers, as shown in Figure 4. This

creates multiple inference paths as shown in the figure.

We then train all interference paths in the following way.

In each training iteration, we randomly bypass inter-

mediate layers to calculate the error between the net-
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work output and the target image. Then, we use back-

propagation [62] to update parameters. In particular, we

go through all layers with probability 1/2 (for training the

original path) and choose one of the remaining by-passing

paths uniformly at random otherwise. The resulting DNN

can generate an output image using only a part of the

DNN and provide incremental quality improvement as

more layers are used. Finally, DNNs are divided into

chunks. Our server places the chunks’ URLs in the video

manifest file. The first DNN chunk consists of the base

layers for all input resolutions. The subsequent chunks

contain the rest of DNNs.

Using the scalable DNN (client-side). A client down-

loads the DNN in chunks. It reconstructs the first partial
DNN after downloading the base layers. The size of this

minimal DNN is only 35.11% – 36.14% of the full DNN

(33 KB to 768 KB), allowing the client to start benefiting

from DNN-based quality enhancement early on. As the

client downloads more blocks, it updates the DNN, which

provides incremental benefit.

Finally, our client opportunistically determines the

number of layers to use during video playback. At every

time interval, the client’s DNN processor first calculates

the amount of time remaining until the playback time of

the chunk it is processing. The client then calculates the

maximum amount of layers it can use that meets the dead-

line. To aid this, the client records the latest inference

time for each layer and updates this table when the infer-

ence time changes. We empirically set the time interval to

four seconds, which is the length of a single video chunk

in our evaluation. This allows NAS clients to dynamically

adapt to changes in the available computational power, as

we demonstrate in §7.4.

5.3 Integrated Bitrate Adaptation
NAS integrates two decisions into its ABR algorithm for

QoE optimization: 1) it decides whether to fetch a video

chunk or a DNN chunk; and 2) if the first decision is to

fetch a video chunk, it chooses the chunk’s bitrate.

The algorithm must balance the two conflicting strate-

gies. The first strategy places emphasis on downloading

the DNN model in the hope that this will bring qual-

ity enhancement in the future, while sacrificing video’s

streaming quality at the moment. The second strategy

optimizes for video bitrate at the moment and delays the

DNN download. In practice, the resulting outcome is

unpredictable because it depends on how the network

conditions change. The solution space is extremely large

considering the number of bitrates, the download order

of video and DNN chunks, and the dynamic range of

available bandwidth.

To tackle the challenge, we use a reinforcement learn-

ing (RL) framework [52,53] that directly optimizes the tar-

get metric (without using explicit decision labels) through

comprehensive “experience”. In particular, we adopt the

actor-critic framework of A3C [53]. It learns a strategy

(or policy) from observations and produces a mapping

from raw observations, such as the fraction of DNN model

downloaded, the quality improvement due to DNN, net-

work throughput samples, and playback buffer occupancy,

to the decisions described above.

RL design. An RL agent interacts with an environment

[68]. For each iteration t, the agent takes an action at ,

after observing a state st from the environment. The

environment then produces a reward rt and updates its

state to st+1. A policy is defined as a function that gives

the probability of taking action at given st , π(st ,at) :→
[0,1]. The goal then is to learn a policy, π , that maximizes

the sum of future discounted reward ∑∞
t=0 γ t rt , where γ ∈

(0,1] is a discount-rate for future reward.

In our case, the set of actions {at} includes whether

to download a DNN chunk or to download a video chunk

of a specific bitrate. The state st includes the number of

remaining DNN chunks to download, throughput mea-

surements, and player measurements (e.g., the playback

buffer occupancy, past bitrates). Table 3 summarizes the

state st . The reward rt is the target QoE metric which is a

function of bitrate utility, rebuffering time, and smooth-

ness of selected bitrates [52, 77] defined as:

N
∑

n=1
q(Rn)−μ

N
∑

n=1
Tn −

N−1

∑
n=1

∣
∣
∣
∣
q(Rn+1)−q(Rn)

∣
∣
∣
∣

N
(1)

where N is the number of video chunks; Rn and Tn re-

spectively represent the video chunk n’s bitrate and the

rebuffering time resulting from its download; μ is the

rebuffering penalty; and q(Rn) is the perceived quality of

bitrate Rn (refer to Table 5 in §7.1 for the choices of μ
and q(Rt)).

To reflect the DNN-based quality enhancement of NAS,

we define effective bitrate Reffective instead of the nomi-

nal bitrate Rn. For each video chunk Cn:

Reffective(Cn) = SSIM−1(SSIM(DNNm(Cn)))

where DNNm(Cn) represents the quality enhanced video

chunk Cn after downloading the (partial) DNN chunk m,

SSIM is the average structural similarity [73] for mea-

suring the video quality, and its inverse SSIM−1 maps

a SSIM value back to the video bitrate. To create the

mapping, we measure the SSIM of original video chunks

at each bitrate (or resolution) and use piece-wise linear

interpolation (e.g., (400 Kbps, SSIM1), ..., (4800 Kbps,

SSIM5)).
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Type State

DNN status # of remaining DNN chunks

Network status
Throughput for past N chunks

Download time past N chunks

Player status Playback buffer occupancy

Video status

Next video chunk sizes

Bitrate of the latest video chunk

# of remaining video chunks

Table 3: State used in our RL framework. We use N
= 8 which empirically provides good performance.

RL training. Our RL framework has two neural approxi-

mators: an actor representing the policy and a critic used

to assess the performance of the policy. We use the policy
gradient method [69] to train the actor and critic networks.

The agent first generates trajectories following the cur-

rent policy πθ (st ,at), where θ represents parameters (or

weights) of the actor’s neural network. The critic net-

work observes these trajectories and learns to estimate

the action-value function Qπθ (st ,at), which is the total

expected reward with respect to taking action at starting

at state st and following the policy πθ . At each iteration,

the actor network uses this estimation to update the model:

θ ← θ +α ∑
t

∇θ logπθ (st ,at)(Qπθ (st ,at)−V πθ (st)),

where V πθ (st) is the value function representing the total

expected reward of πθ starting at state st , and α is the

learning rate. In our RL framework, because the reward

reflects the average QoE enhancement that content-aware

DNN delivers, the critic network learns to estimate the

updated total reward. This enables the actor network to

learn a policy that balances video and DNN downloads to

maximize the QoE.

We use a chunk-level simulator similar to that of Pen-

sieve to accelerate the ABR training. It takes network

throughput traces and simulates NAS’ video streaming

dynamics. In addition, we pre-compute the DNN-based

quality enhancement by averaging it over all the videos

for each DNN quality. We then use the values to produce

a generic ABR model.

When a DNN is downloaded, the simulator updates

the amount of downloaded DNN chunks (i.e., decrements

the state ‘number of remaining DNN chunks’). When

a video chunk is downloaded, it adds the chunk to the

playback buffer. It then computes the QoE that reflects

DNN-based quality enhancement, using the (effective)

bitrate utility of each chunk and the rebuffing time. Note,

the simulator performs neither actual video downloads

nor DNN inferences. Thus, it reduces the training time by

97.12% compared to real-time emulation.

Component Lines of code (LoC) Changed

DASH video player 19K lines of JavaScript 8.8% (1763)

Content-aware DNN 6.3K lines of Python - (6.3K)

Integrated ABR algorithm 5.5K lines of Python - (5.5K)

Table 4: NAS implementation (Lines of Code)
<DNN>

<Representation quality=“low”>
<SegmentTemplate

DNN=“$RepresentationQuality$/$Number$” 
startNumber=“1” endNumber=“5”/>

</Representation>

</DNN>

Figure 5: NAS manifest file structure

6 Implementation
We implement NAS client by extending a DASH video

player. Both the server-side (training) and client-side

(inference) DNN processing are implemented using Py-

torch [59]. Table 4 shows the lines of code (LoC) for each

component.

NAS client (DASH video player). To implement NAS

client, we modify dash.js [4] (version 2.4), a reference im-

plementation of MPEG DASH client written in JavaScript.

We run the integrated ABR and content-aware DNNs as

separate processes. dash.js is configured to fetch the

ABR decisions and quality enhanced chunks through

inter-process communication. We add DNN metadata

on a manifest file as shown in Figure 5. The quality
attribute indicates the DNN quality level. The DNN at-

tribute of SegmentTemplate is used to create the

chunk URL, and startNumber and endNumber indi-

cate the chunk index range. In addition, the manifest file

includes the number of layers and the number of channels

for each DNN.

Training content-aware DNNs. We implement the scal-

able super-resolution DNN using Pytorch. For training

the DNN model, we use input image patches of size 41x41

pixels by randomly cropping the low-resolution images

(e.g., 240p, 360p, 480p, 720p) and run the popular ADAM

algorithm [46] to optimize DNN parameters. The mini-

batch size, weight decaying parameter, and learning rate

are set to 64, 10−3, and 10−4, respectively. We initialize

the DNN model using parameters of the generic model

(§4.1). We then fine-tune it over 100 mini-batch updates

per minute of video to generate a content-aware DNN.

Finally, we round off its parameters from single-precision

(32-bit) to half-precision (16-bit), which halves the DNN

size while introducing minimal performance degradation

(virtually no difference in SSIM).

Training integrated ABR. We implement our integrated

ABR extending Pensieve’s implementation [8]. The initial

learning rates of actor/critic networks are set to 10−4 and
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QoE type Bitrate utility (q(R)) Rebuffer penalty (μ)

QoElin R 4.3

QoElog log(R/Rmin) 2.66

QoEhd

0.4→1, 0.8→2, 1.2→3

2.4→12, 4.8→15
8

Table 5: QoE metrics used for evaluation

10−3, respectively. The entropy weight is initialized as

2. We iterate training over 60,000 epochs in which we

decay the entropy weight from 2 to 0.055 exponentially

over every epoch. Finally, we select the ABR network

that delivers the highest QoE for our training traces.

7 Evaluation
We evaluate NAS by answering the following questions.

◦ How does NAS perform compared to its baseline

competitors, and what is the training cost?

◦ How does each design component of NAS contribute

to the overall performance?

◦ Does NAS effectively adapt to heterogeneous de-

vices and temporal variance in client’s computing

power?

◦ What is the end-to-end processing latency and re-

source usage of NAS?

7.1 Methodology
Videos. We use videos from popular channels on Youtube.

For each of the nine Youtube channel categories, we select

three popular channels in the order of appearance. We

then pick the most popular video from each channel that

supports 1080p quality and whose length is longer than 5

minutes—the number of views of 27 video clips ranges

from 7M to 737M. Finally, we download 1080p videos

and produce multi-bitrate videos following the Youtube

and DASH recommendations [3,13]: Each 1080p video is

re-encoded using the H.264 codec [11] in which GOP (or

chunk size), frame rate, and bitrates are respectively set to

4 seconds, 24 fps and {400, 800, 1200, 2400, 4800}Kbps

(which represent for {240, 360, 480, 720, 1080}p resolu-

tion videos). Unless otherwise noted, we use the entire

video for training and use the first 5 minutes for playback.

Training over the entire video ensures that NAS delivers

consistent quality enhancement over the entire video.

Network traces. We use a real bandwidth dataset consist-

ing of 508 throughput traces from Norway’s 3G network

(2010-2011) [60] and 421 traces from U.S. broadband

(2016) [9], compiled by the Pensieve author [8]. We filter

out the traces that consistently experience low bandwidth

(< 400 Kbps) for an extended time (≥100 seconds). The

resulting average throughput ranges from 0.38 Mbps to

4.69 Mbp, and the mean and median are 1.31 Mbps and

1.09 Mbps, respectively. Each trace spans 320 seconds,

and we loop the trace until a video is completely down-

loaded. We use randomly selected 80 % of our traces for

training and the remaining 20 % for testing.

Baseline. We compare NAS against the following state-

of-the-art bitrate adaptation that does not utilize client

computation.

◦ Pensieve [52] uses deep reinforcement learning to

maximize QoE.

◦ RobustMPC [77] uses playback buffer occupancy

and throughput predictions over next five chunks to

select the bitrate that maximizes QoE. We use the

version reproduced by the authors of Pensieve [8].

◦ BOLA [66] uses Lyapunov optimization based on

playback buffer occupancy. We use the BOLA ver-

sion implemented in dash.js, which is a Javascript-

based reference implementation of a MPEG-DASH

player [4].

QoE metrics. We use three types QoE metrics, compiled

by MPC and Pensieve, whose the bitrate utility function,

q(Rn), and rebuffering penalty constant, μ of Equation 1,

differ as summarized in Table 5.

◦ QoElin uses a linear bitrate utility.

◦ QoElog uses a logarithmic bitrate utility function

that represents its decreasing marginal utility.

◦ QoEhd heavily favors high-definition (HD) video

(720p and 1080p) over non-HD.

Experimental settings. We run our dash.js implemen-

tation on a Chromium Browser (version 65) to stream

MPEG-DASH videos. We use six GPU models from

Nvidia’s desktop GPU product line listed in Table 1. Un-

less otherwise noted, the default client-side GPU is Nvidia

Titan Xp. In our setting, the content-aware DNN and the

ABR network run at the client as separate processes. To

emulate the network conditions from the network traces,

we use Mahimahi [55].

We use two experiment settings. To evaluate NAS

client on all six GPUs, we have a local testbed. To

scale training and testing, we use Google Cloud Plat-

form. Training is done using GPU instances equipped

with Nvidia’s server-class Tesla P100 GPU. However,

Google Cloud Platform does not have desktop class GPUs,

while we need to scale client-side streaming experiments

to 18 hours of network traces x 27 video clips x 4 types of

ABR x 3 types of QoE, totaling 5,832 hours of streaming

time. Thus, we take quality and latency measurements

of content-aware DNNs using the local testbed on each

GPU device for each video. We then emulate the network

condition between NAS server and client once for each

network trace and apply the effect of the quality enhance-

ment and latency of content-aware DNNs. We confirm

the network-emulated, DNN-simulated clients produce
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Figure 6: Normalized QoE comparison of video clips from the nine content categories of YouTube.
(1: Beauty, 2: Comedy, 3: Cook, 4: Entertainment, 5: Game, 6: Music, 7: News, 8: Sports, 9: Technology)
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Figure 7: Cumulative distribution of QoE for ‘Sports’ content category
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Figure 8: QoElin breakdown
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Figure 9: Normalized bandwidth
usage at QoElin=0.98
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Figure 10: Cumulative server cost

the same QoE as real clients of our local testbed using a

fraction of test data.

7.2 NAS vs. Existing Video Delivery
QoE improvement. Figure 6 shows the average QoE

of video clips across the nine content categories. The

error bars indicate one standard deviation from the av-

erage. NAS delivers the highest QoE across all content

categories over all three QoE metrics. The result shows

significant improvement over prior work. NAS consis-

tently outperforms Pensieve by a large margin across all

QoE metrics: QoElin (43.08% better), QoElog (36.26%

better), and QoEhd (42.57% better). With QoElin, NAS

outperforms Pensieve 43.08% on average, whereas Pen-

sieve achieves a 19.31% improvement over RobustMPC

(R-MPC). Compared to BOLA, NAS achieves 92.28%

improvement in QoElin. The QoE improvement varies

across content types from 21.89% (1: ‘Beauty’) to 76.04%

(6: ‘Music’) over Pensieve because many factors, such as

the scene complexity, compression artifacts, and temporal

redundancy, affect the DNN performance.

Figure 7 shows the cumulative distribution of QoE

over our test traces. It shows the ‘Sports’ content cat-

egory which shows medium gain among all categories.

NAS delivers benefit across all network conditions. NAS

improves the median QoElin by 58.55% over Pensieve.

Note, Pensieve mainly delivers its QoE gain over Ro-

bustMPC by reducing rebuffering at the cost of bitrate

utility. In contrast, NAS does not exhibit such tradeoff

because it uses client computation. Other content (not

shown) displays a similar trend. Finally, Figure 8 shows a

breakdown of QoE into bitrate utility, rebuffering penalty,

and the smoothness penalty. NAS benefits the most from

the bitrate utility due to the DNN-based quality enhance-

ment.

Bandwidth savings. Despite the DNN transfer overhead,

NAS requires less bandwidth in delivering the same QoE

level. To demonstrate this, we create a hypothetical setting

using the chunk-level simulator (§5.3) where NAS clients

receive a fraction of bandwidth that Pensieve clients re-

ceive including the DNN transfer overhead. We adjust the

fraction and empirically determine the fraction that deliv-
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Figure 11: Video quality in PSNR and SSIM (240p input)
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Figure 13: Scalable DNN vs. Full DNN

ers the same QoE. We assume NAS clients download the

largest DNN (‘Ultra-high’) model for every five-minute

video. Figure 9 shows the average bandwidth usage of

Pensieve and NAS. On average across all videos, NAS re-

quires 17.13% less bandwidth than Pensieve to deliver the

same quality. The savings vary across content between

10.69% and 26.90%. This demonstrates the benefit of

using a DNN outweighs the overhead of transferring the

DNN.

Cost-benefit analysis (server-side). We now quantify

the overall server-side cost in using a NAS content deliv-

ery network. While NAS servers use less bandwidth to

deliver the same quality, they must train content-aware

DNNs and the integrated ABR network. We quantify the

computation and bandwidth cost of the CDN servers. The

training time for the integrated ABR is only 10.92 hours

on a CPU. Because it is a one-time cost amortized across

all video streams, the additional cost is negligible. In con-

trast, the content-aware DNNs must be trained for each

video. The total training time (across multiple DNNs) per

minute of video is 10 minutes.

For a Google cloud instance with 8 vCPUs, 32 GB

RAM, and a Nvidia P100 GPU, this translates to $0.23 per

minute of video. For bandwidth, Amazon CDN instance

charges at most 0.085 $/GB. The price per bandwidth

becomes cheaper as one uses more bandwidth. Using

these as reference, we compute the total video delivery

cost a function of cumulative viewing time per minute of

video. Figure 10 shows the cost comparison for NAS and

Pensieve. As before, we assume each user watches a video

clip for five minutes (i.e., DNNs are transferred every five

minutes of viewing). This is a conservative estimate given

the popularity of binge-watching [5]. NAS pays the up-

front cost of computation, but as the cumulative viewing

time increases, it is amortized. Note, NAS uses 17.13%

less bandwidth to deliver the same user QoE. Thus, when

the cumulative viewing reaches 30 hours (per minute

of video in the system), NAS CDN recoups the initial

investment.

7.3 Component-wise Analysis
We evaluate how each design component contributes to

the quality improvement.

Content-awareness. Figure 11 compares video qual-

ity of content-aware DNN (awDNN), a content-agnostic

DNN (agDNN) trained on standard benchmark images

(NTIRE 2017 dataset [19]), and the original 240p video

we use as input upscaled by the bicubic interpolation.

We measure the video quality both in PSNR [35] and

SSIM [73] in which PSNR represents the average mean

square error between two images in logarithmic decibel

scale. Content-aware DNN delivers consistent improve-

ment whereas content-agnostic DNNs even degrades the

quality in some cases with respect to the PNSR measure

(content type: 6) and the SSIM measure (type: 1,2,4,5,6).

This confirms our rationale for using DNN’s training ac-

curacy.

Scalable DNN. Figure 13 demonstrates the benefit of uti-

lizing a partial DNN. We compare Pensieve, NAS, and

a version of NAS (NAS-FULL) that does not utilize par-

tial DNN downloads. Specifically, Figure 13(a) shows

the cumulative distribution of QoElin before the average

full DNN download time (47.82 seconds). As soon as a

partial DNN is downloaded (22.16 seconds on average),

NAS enhances the quality. The result shows that this

delivers 17.54 % and 3.35 % QoE improvement in the

median and mean, respectively. Note, the QoE of NAS

and NAS-FULL becomes identical after downloading the

full DNN (t > 47.82 seconds) as shown in Figure 13(b).

Integrated ABR. The integrated ABR delivers benefit

during and after the DNN download. To demonstrate this,

we create two hypothetical settings using the chunk-level

simulator (§5.3).

First, we compare NAS with a version that uses a naive
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Figure 14: Integrated ABR vs. Quality-unaware
ABR

Model Name
Frames per second (FPS)

Low Medium High Ultra-high

GTX 1050 Ti 34.36 17.62 14.91 7.37

GTX 1060 45.27 30.05 25.96 13.17

GTX 1070 Ti 41.76 45.24 41.53 21.47

GTX 1080 53.82 52.86 38.95 21.46

GTX 1080 Ti 58.94 56.29 57.12 31.34
Titan Xp 52.99 51.72 52.22 33.58

Table 6: DNN processing speed on desktop GPUs
(Bold font indicates the selected quality level.)

DNN download strategy that downloads a DNN at a frac-

tion of the video bitrate chosen by Pensieve. Note, it does

not integrate the bitrate selection and DNN download de-

cision. We use two variants: one that aggressively down-

loads DNN at 100% of the video bitrate and the other that

uses only 10%. Both are configured to start downloading

the DNN when the playback buffer becomes larger than

15.42 seconds, which is the average time that NAS starts

to stream a DNN in our test traffic traces. Our result

shows NAS respectively outperforms the non-aggressive

and aggressive strawman by 16.36% and 9.13% with re-

spect to QoElin. Figure 12 shows the comparison of QoE

components. The non-aggressive version experiences

lower bitrate utility compared to NAS because the for-

mer downloads the DNN more slowly. In contrast, the

aggressive version increases the rebuffering penalty by

x2.5 which negatively affects the QoE.

Next, to evaluate the benefit of quality-enhancement

aware bitrate selection after the DNN is fully downloaded,

we compare NAS with a quality-enhancement unaware

ABR after the full DNN download. Figure 14(a) shows

the average QoE in this setting. We see that the quality-

enhancement aware ABR delivers a large gain for QoEhd

(28.96 %), whereas it offers minimal benefit to QoElin

(0.01 %) and slightly degrades on QoElog (-3.14 %). The

reason it delivers a large gain for QoEhd is because the

DNN-enhanced quality of 1.2 Mbps (480p) videos get

close to that of the original 2.4 Mbps (720p) video and

the marginal utility with respect to the increased quality is

far greater for QoEhd than any other QoE type, especially

between 1.2 Mbps to 2.4 Mbps (Table 5). The integrated
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Figure 16: Dynamic adaptation to computing power

ABR reflects this enhancement in the bitrate decisions to

download 480p much more often when using QoEhd as

shown in Figure 14(b).

7.4 Dynamic Adaptation to Computation
We demonstrate NAS’s ability to adapt to heterogeneous

clients and temporal variation in computing power.

Heterogeneous clients. We demonstrate NAS is able to

meet real-time constraints on six desktop GPUs shown in

Table 1. We run our DASH client on six clients each with

a different GPU model and measure their performance.

First, we measure the throughput of the DNN processing

engine, which includes decoding, DNN inference, and

re-encoding. Table 6 reports the minimum processing

speed across all input resolutions for each device. The

video playback rate is 30 frames per second. Clients per-

form a test-run when it receives a video manifest file. The

selected quality level (e.g., ‘Low’, ‘Medium’, ‘High’, or

‘Ultra-high’) is indicated in boldface. We see that each de-

vice selects one that meets the real-time constraint. Note

the processing time does not depend on video content.

Next, we measure the QoE of clients using four differ-

ent quality levels in our cloud setting. Figure 15 shows

the cumulative distribution of QoElin for each quality

level. All quality levels outperform Pensieve. The higher

the quality level DNN, the better the quality it delivers.

Note, even though DNNs of higher quality are larger in

size, they deliver incremental benefit over lower quality

DNNs.

In sum, the results indicate that NAS adapts to hetero-

geneous devices, and a device with higher computational

power receives greater benefit.
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Figure 17: Case study: A time-line of NAS client in operation (Video Source: [16])

Phase Processing time (sec)

Decode 0.28

Super resolution 3.69

Encode 0.91

Total 4.88

NAS’ parallel pipeline 3.76 (23.0% reduction)

Table 7: Video processing time per phase
Temporal variation. We evaluate client’s adaptation to

temporal variation in computing power in isolation. We

emulate the changes in available computing power by

varying the clock frequency of GPU (Titan Xp). We

change the GPU clock frequency at 10% granularity and

report the inference path used and its throughput. Fig-

ure 16 shows the result compared to a naive version that

only uses the full DNN (NAS-FULL) and the ideal line

that plots the normalized throughput (y-axis) of each in-

ference path at full clock cycle. x-axis shows the number

of optional blocks used for inference. The y-intercept

represents the computing requirement for the required

layers of DNN. We report the raw throughput for all re-

sults. It shows NAS adapts to the changing resource with

anytime prediction to the extent that the underlying DNN

supports and thus delivers real-time performance unlike

NAS-FULL that does not.

7.5 End-to-end Operation
NAS client in operation. We present an end-to-end op-

eration of our NAS client using a network trace from our

testset. We use a client with a Titan Xp GPU, running

on our local testbed. Figure 17 shows the time-line start-

ing from a video request made from our DASH client.

At t = 0.36 (sec), it downloads the video manifest and

test-runs the mock DNNs to select the DNN quality level.

The test-run finishes at t = 2. The video starts playing

at t = 2.03. At t = 17.64, the first DNN chunk is down-

loaded, and the minimal DNN initialized at t = 17.71. At

this time, the DNN processing begins, and video chunks

(6-7) in the playback buffer receive quality enhancement.

Subsequent video chunks are processed by the DNN as

they arrive. As new DNN chunks arrive, the DNNs are

incrementally updated. At t = 46.41, DNNs are fully

downloaded.

DNN processing time. We evaluate the DNN process-

ing latency of NAS client. For DNN processing, NAS

pipelines three processes, each of which respectively han-

dles decoding, super-resolution, and re-encoding. Ta-

ble 7 shows the processing time for each phase for a four-

second video chunk. We use GTX 1080 Ti for processing

‘Ultra-high’ quality DNN using a 30 fps, 240p video as

input. We re-encode the DNN’s output in H.264 using the

fastest option in ffmpeg [6]. This is because the compres-

sion factor is not important. The total processing time

when each phase is serialized is 4.88 seconds, whereas

our pipelined processing takes 3.76 seconds. Considering

super-resolution takes 3.69 seconds, the latency overhead

of the rest is minimal.

Finally, we measure the client’s GPU memory usage

for DNN processing. ‘Ultra-high’, ‘High’, ‘Medium’,

‘Low’ quality DNNs respectively use 3.57 GB, 3.12 GB,

3.05 GB, and 2.99 GB of GPU memory.

8 Conclusion
We present NAS, a video delivery system that utilizes

client computation to enhance the video quality. Unlike

existing video delivery that solely relies on the bandwidth

resource, NAS uses client-side computation powered by

deep neural networks (DNNs). NAS introduces new sys-

tem designs to address practical problems in realizing the

vision on top of DASH. Our evaluation over real videos on

real network traces shows NAS delivers improvement be-

tween 21.89–76.04% in user quality of experience (QoE)

over the current state of the art. Finally, the cost-benefit

analysis shows content distribution networks can actually

reduce the cost of video delivery while providing the same

or better QoE compared to the current state of the art.
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