
NeuroScaler: Neural Video Enhancement at Scale
Hyunho Yeo Hwijoon Lim Jaehong Kim Youngmok Jung Juncheol Ye Dongsu Han

KAIST

ABSTRACT
High-definition live streaming has experienced tremendous growth.

However, the video quality of live video is often limited by the

streamer’s uplink bandwidth. Recently, neural-enhanced live stream-

ing has shown great promise in enhancing the video quality by run-

ning neural super-resolution at the ingest server. Despite its benefit,

it is too expensive to be deployed at scale. To overcome the limita-

tion, we present NeuroScaler, a framework that delivers efficient

and scalable neural enhancement for live streams. First, to acceler-

ate end-to-end neural enhancement, we propose novel algorithms

that significantly reduce the overhead of video super-resolution,

encoding, and GPU context switching. Second, to maximize the

overall quality gain, we devise a resource scheduler that considers

the unique characteristics of the neural-enhancing workload. Our

evaluation on a public cloud shows NeuroScaler reduces the overall

cost by 22.3× and 3.0-11.1× compared to the latest per-frame and

selective neural-enhancing systems, respectively.

CCS CONCEPTS
• Information systems → Multimedia streaming; • Comput-
ing methodologies → Computer vision; • Computer systems
organization → Real-time system architecture;

KEYWORDS
live streaming, super-resolution, deep neural networks

ACM Reference Format:
Hyunho Yeo, Hwijoon Lim, Jaehong Kim, Youngmok Jung, Juncheol Ye,

Dongsu Han. 2022. NeuroScaler: Neural Video Enhancement at Scale. In

ACM SIGCOMM 2022 Conference (SIGCOMM ’22), August 22–26, 2022, Ams-
terdam, Netherlands. ACM, New York, NY, USA, 17 pages. https://doi.org/10.

1145/3544216.3544218

1 INTRODUCTION
The demand for live streaming has rapidly grown over the last

decade—live video traffic is expected to take up 17 percent of In-

ternet traffic by 2022 [12]. Current live streaming infrastructure

relies on two key pieces: 1) at the ingest side, the streamer uploads

a video to the media server using the low-latency streaming pro-

tocols [46, 47]; and 2) at the distribution side, the clients run an

adaptive bitrate (ABR) algorithm [4, 15, 64] to select the highest

quality video that can be streamed in real time.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9420-8/22/08. . . $15.00

https://doi.org/10.1145/3544216.3544218

Unfortunately, traditional live streaming falls short of consis-

tently delivering high-quality video (e.g., 4K/8K) because the ingest

video quality critically depends on the streamer’s uplink band-

width [106, 112]. When the ingest path becomes congested, the

entire downstream video quality suffers directly [56, 69]. However,

video quality is the most important factor that affects user engage-

ment in live streaming [65, 77]. For example, more than 50% of live

viewers abandon a stream when video quality suffers more than 90

seconds [28]. The churn of these viewers can in turn greatly harm

the revenue of live streaming providers [51, 58].

Recent advances in neural-enhanced streaming [39, 50, 74, 85,

91, 98] show great promise in enhancing the ingest video qual-

ity by utilizing computations at a media server. When the ingest

video quality suffers, the media server recovers high-quality video

by running end-to-end neural enhancement that consists of 1) de-

coding a low-quality stream, 2) applying a super-resolution deep

neural network (DNN) to the stream, and 3) encoding the super-

resolved outputs. This delivers a dramatic quality improvement in

the downstream video.

However, neural enhancement is too costly to support commercial-

scale live streaming. For example, Twitch [70] supports more than

100,000 concurrent live streams [59]. Applying end-to-end neural

enhancement in this setting requires tens of thousands of GPUs,

which costs over $169,000 per hour on a public cloud (§3). Our cost

breakdown shows that both video super-resolution and encoding

are expensive. Neural super-resolution requires 100-1000× more

computations compared to a DNN used for discriminative tasks [88],

and video encoding is up to 3.3× slower than super-resolution.

In this paper, we aim to develop a scalable and resource-efficient

neural-enhancing framework, which reduces the operating cost

by an order of magnitude and efficiently scales out to a cluster of

computing instances. Building such a framework involves a number

of non-trivial challenges:

◦ First, existing video super-resolution methods are expensive.

Running neural super-resolution on a per-frame basis is infeasi-

ble. The state-of-the-art selective super-resolution [101] reduces

the overhead by applying a DNN to selective frames and by

reusing the outputs for other frames. However, it is not designed

for live video and involves expensive offline computation.

◦ Second, super-resolved video must be (re-)encoded in real time

for live streaming. However, traditional video codecs [25, 26, 33]

are computationally expensive in compressing high-resolution

videos (4K/8K), often becoming a bottleneck in end-to-end neu-

ral enhancement (§3).

◦ Lastly, to maximize the overall quality improvement on a large

number of streams and computing instances, resources must be

optimally allocated for each stream at each instance. However,

typical resource schedulers cause imbalances in per-instance

and per-stream load, which in turn leads to noticable quality

degradation (§3).

795

https://doi.org/10.1145/3544216.3544218
https://doi.org/10.1145/3544216.3544218
https://doi.org/10.1145/3544216.3544218
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Yeo et al.

This paper presents NeuroScaler, the first work that identifies

and solves the main computational bottlenecks of neural-enhanced

live streaming. NeuroScaler addresses the challenges above by in-

troducing new system designs:

End-to-end optimizations: We design novel algorithms that signif-

icantly reduce the costs of video super-resolution, video encod-

ing, and GPU context switching. First, to accelerate video super-

resolution, it extends selective super-resolution but presents an

online algorithm that chooses frames to apply super-resolution (i.e.,

anchor frames) using codec-level information in real time. In con-

trast to prior work [101] that requires O(|frame|) neural inference,

our algorithm selects anchor frames without any inference while

providing the same quality gain. Second, we devise a hybrid video
codec that is specialized for encoding selective super-resolution

outputs. Instead of re-encoding every output frame, the hybrid

codec reuses the original input video and compresses only the

super-resolved anchor frames using an image codec. Then, the

video and the enhanced anchor frames are packaged together in

a single stream and delivered to clients. Compared to traditional

video codecs, the hybrid codec reduces the encoding cost by an

order of magnitude, while achieving similar compression efficiency.

Efficient resource scheduling: We introduce a novel anchor-aware
resource scheduler, which considers the unique characteristics of

anchor frames for efficiently utilizing a computing cluster. First,

the quality gains of anchor frames are heterogeneous. Thus, to

maximize the overall quality, the scheduler runs at a centralized

server to select the most beneficial anchor frames across all streams.

Next, the computing overheads of anchor frames are heterogeneous

across streams and can change over time. Therefore, to accurately

balance the load among computing instances at scale, the scheduler

dynamically estimates the number of anchor frames each instance

can process and forward them as scheduled.

We evaluate NeuroScaler with a full system implementation. Our

evaluation using real-world videos and GPU cloud instances shows

that NeuroScaler greatly improves the system throughput, resource

efficiency, and cost-effectiveness of end-to-end neural enhancement.

Compared to the latest per-frame and selective neural enhancement,

NeuroScaler respectively improves the processing throughput by

10× and 2.5-5× and reduces the overall cost by 22.3× and 3.0-11.1×.
In summary, we make three key contributions:

◦ Scalable neural enhancement. NeuroScaler is the first work
to identify and solve the key bottlenecks of live neural enhance-

ment (§3).

◦ End-to-end optimizations.NeuroScaler proposes zero-inference
anchor frame selection (§5.1), hybrid codec (§6.1), and context

switching optimizations for supporting multiple, concurrent live

streams (§6.2), greatly reducing the end-to-end neural enhance-

ment cost.

◦ Efficient resource allocation. NeuroScaler introduces a novel
anchor-aware scheduler (§5.2) that maximizes the overall quality

gain across concurrent live streams.

This work does not raise any ethical issues.

2 BACKGROUND
Live streaming consists of the ingest and distribution side, as illus-

trated in Figure 1. First, at the ingest side, the streamer captures live

Streamer

Traditional streaming

Transcode

End-to-end neural enhancement

Neural-enhanced streaming
720p

720p

240p

2160p
1440p

Infer EncodeDecode

Media server Viewers

Figure 1: Traditional vs. Neural-enhanced streaming
(Case for adaptive streaming)

Motion vector ResidualReference index

Previous frames Reference frame Target frame
Figure 2: Selective super-resolution overview

video and uploads it to a media server. In adaptive streaming [4, 15],

the streamer uploads a single video stream, and the media server

transcodes it into multiple quality versions. In multi-party video

conferencing [64], a broadcaster uploads multiple quality streams

using simulcast [63] or scalable video codec (SVC) [48], and the

media server forwards the streams to viewers. Next, at the distri-

bution side, the client runs an adaptive bitrate (ABR) algorithm to

choose/download the highest quality video under the given network

bandwidth.

The common limitation of traditional live streaming is that video

quality is limited by the streamer’s uplink bandwidth [56, 69, 106].

Even if viewers have ample network bandwidth, the limitation can

deprive them of the opportunity to enjoy high-quality video.

Super-resolution is a class of techniques that produces a high-

resolution image from a lower resolution counterpart. Recent stud-

ies [78, 84, 86, 89, 107] use deep neural networks (DNN) for learning

the mapping from low-resolution to high-resolution and demon-

strate dramatic quality improvements.

Neural-enhanced live streaming [39, 50, 74, 85, 91, 98] employs

super-resolution DNNs to enhance the ingest stream, as shown

in Figure 1. In contrast to traditional live streaming, the media

server runs end-to-end neural enhancement. When a video arrives,

it is first decoded into raw frames. Then, the DNN is applied to all

or selective frames depending on a super-resolution method. The

outputs are re-encoded into a video before delivering it to clients.

To provide reliable quality improvement, a content-aware DNN

is commonly used for each stream, which can be also updated dur-

ing live streaming. The context switching between content-aware

DNNs incurs two types of overhead. First, recent DNN compil-

ers [3, 42, 109, 110] provide optimized inference on a target accel-

erator, but this involves an upfront cost due to model optimization,

which takes up to minutes. It applies both graph-level and operator-

level optimizations [42], generating a DNN tailored for a specific

target. Second, before running inference, a DNN and frames must

be loaded to the device memory of a target accelerator. Because

neural accelerators commonly have limited memory size (e.g., 16GB

in NVIDIA T4 [41]), multiple content-aware DNNs, each requiring

several GBs of memory, must be frequently swapped in/out.

796

NeuroScaler: Neural Video Enhancement at Scale SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands
#s

tre
am

s

0

5

10

(4GPUs) (4vCPUs)
Infer Encode Decode E2E

Figure 3: Per-frame SR is limited by the
inference overhead.

#s
tre

am
s

(4GPUs)
(4vCPUs)

Infer0

5

10

Select EncodeDecode E2E

Figure 4: Selective SR is limited by the
selection/encoding overhead.

5
6
7
8

PS
N

R
 g

ai
n

(d
B

)

Fraction of anchor frames (%)

Key Key+Uniform NEMO

0 5 10 15 20 25

Figure 5: Naive anchor selection
methods degrade the quality.

Selective super-resolution reduces the computing overhead by

utilizing the temporal redundancy across video frames. Neural

inference is only applied to selective frames, referred to as anchor
frames. As shown in Figure 2, non-anchor frames are reconstructed

by reusing the previous super-resolved frames guided by codec-

level information (e.g., reference index, motion vector, residual).

This involves lightweight bilinear interpolation and decoding and

thus can be processed in real time even on mobile devices [101].

When a non-anchor frame is up-scaled by reusing the previ-

ous super-resolved frames, quality loss (compared to per-frame

inference) inevitably occurs due to temporal difference. This loss

accumulates across consecutive non-anchor frames, but is reset at

an anchor frame. Therefore, it is important to select a beneficial set

of anchor frames to maximize the quality. For this, NEMO [101]

relies on the costly per-frame inference. As a result, this cannot be

used for live streaming in which anchor frame selection must be

done online in real time.

3 CHALLENGES
To demonstrate that end-to-end neural enchantment is prohibitively

expensive and inefficient, we benchmark its cost and quality gain

on a public cloud.

3.1 Expensive End-to-end Enhancement
End-to-end video super-resolution consists of the decode, infer,

and (re)encode processes and is prohibitively expensive. To demon-

strate this, we benchmark two super-resolution (SR) methods: 1)

per-frame SR applies neural super-resolution to every frame, and 2)

selective SR applies neural super-resolution to anchor frames (∼7.5%
of frames), which are chosen by the NEMO algorithm [101]. We use

a GPU cloud instance [8] that has four inference-optimized NVIDIA

T4 GPUs [41]. We run the “high quality” DNN from NAS [102],

which up-scales a 720p, 60 fps video [19] to a 2160p version. For fair

comparison, we configure both approaches achieve a similar quality

by adjusting the DNN size: Original (32.39 dB in PSNR), Per-frame

SR (40.12 dB), Selective SR (40.19 dB).

• Per-frame SR. Figure 3 shows the processing throughput of each

process (decode, infer, and encode) run in isolation and the com-

bined end-to-end throughput; the bars represent the number of live

streams that can be processed in real time. The per-frame SR can

process only a single stream in real time due to the expensive DNN

inference. This costs at least $1.690 per hour per stream using the

cloud GPU instance. At Twitch scale, with 100,000 concurrent live

streams [59], this translates to $169,000 per hour.

• Selective SR (NEMO) shows 10× improvement in inference through-

put, as shown in Figure 4. However, it requires expensive per-frame

inference for offline anchor frame selection, which chooses a set

0

1

2

3

4

Avg 90%-tile95%-tile

PS
N

R
 d

iff
 (d

B
)

Best Mean Worst

1.4dB
1.0dB

B
et

te
r

(a) Quality difference

GPU1

GPU0

#Anchor frames

GPU1
GPU0

PSNR diff (dB)

0 10 20

0 1 2 3

5 15

(b) Per-GPU statistics

Figure 6: Anchor-agnostic resource scheduling results in
noticeable quality degradation.

of anchor frames that improves video quality the most. The an-

chor selection is a one time cost for on-demand video, but offline

processing is not feasible for live streaming. Alternatively, sim-

ply applying neural super-resolution only to key frames (Key SR)

or key frames and equally-spaced normal frames (Key+Uniform

SR) eliminates the costly anchor selection process, but results in

large quality degradation due to ineffective anchor frames. Figure 5

shows video quality in PSNR against the fraction of anchor frames

for different selective SR methods. Compared to NEMO, 1) Key SR

degrades video quality by 1.34-2.90 dB, and 2) Key+Uniform SR

requires 2.5-3.0× more anchor frames to achieve the same quality.

Insight #1. Live neural enhancement can greatly benefit from selec-
tive inference, provided that impactful anchor frames can be selected
in real time.
Video encoding. Super-resolved frames must be re-encoded in

real time for live streaming, but encoding high-resolution videos

(4K/8K) is expensive. Even if selective inference effectively reduces

the inference overhead, the end-to-end processing is still slow be-

cause video re-encoding becomes a key bottleneck. To demonstrate

this, we benchmark the VP9 software encoder [33] and the H.265

hardware encoder [40] on the same instance as above.

Figure 4 compares the processing throughput of video encod-

ing and selective inference. The hardware encoder (using on-chip

GPUs) can process four 4K, 60 fps live streams, but it is 2.5× slower

than selective inference. Even worse, hardware codecs are often

unavailable on neural accelerators [2, 7, 9, 13]. In this case, running

the software encoder [33] is 5× slower than the selective inference.

Alternatively, video encoding can be offloaded to (off-chip) video

codec FPGAs/ASICs [10, 35]. However, transmitting 4K/8K frames

consumes too much bandwidth, even with lossless image compres-

sion [44] (e.g., 2.2-9.0 Gbps per stream) and can cause a large delay,

making it difficult, if not infeasible, to support live streaming.

Insight #2. To accelerate end-to-end neural enhancement, reducing
the video encoding overhead is also critical.

797

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Yeo et al.

3.2 Inefficient Resource Scheduling
To maximize the overall quality improvement on a computing clus-

ter, 1) the number of anchor frames has be carefully allocated across

streams, and 2) anchor enhancement tasks must be balanced across

computing instances. However, this is challenging due to the charac-

teristics of anchor frames. First, the quality gains of anchor frames

are heterogeneous. Second, the computing overheads of anchor

frames are heterogeneous across streams and can change over time

(according to the variation of ingest resolution). Using naive stream-

level load-balancing [31, 36] causes imbalances in per-stream an-

chor frames and per-instance load, which in turn leads to noticeable

quality degradation.

To demonstrate this, we benchmark a strawman anchor-agnostic
scheduler that 1) allocates video streams to GPUs in a round-robin

manner, 2) applying NeuroScaler’s end-to-end neural enhancement

(§4) per GPU. We use two servers, each with a single NVIDIA

T4 GPU [41]. Five 360p and 720p streams (total of 10 streams)

are up-scaled to 1080p and 2160p versions, respectively; a 720p

frame is 4.2×more expensive to enhance compared to a 360p frame.

The experiment is repeated 1,000 times by randomly shuffling the

order of video streams. For each iteration, we measure the quality

difference from per-frame super-resolution for each video chunk.

Figure 6(a) shows the average, 90%-tile, 95%-tile quality differ-

ence of video chunks for the best, mean, and worst case. The anchor-

agnostic scheme fails to consistently minimize the quality difference

across iterations. There is a noticeable difference between the best

and worst case: 0.18 dB (average), 1.0 dB (90%-tile), and 1.4 dB (95%-

tile). This is because the anchor-agnostic scheme suffers from an

imbalance in per-stream anchor frames, which results from an im-
balance in per-instance load. To demonstrate this, Figure 6(b) shows

the per-GPU statistics for the worst case, where the 720p and 360p

streams are placed on GPU0 and GPU1, respectively. In GPU0, a

few anchor frames are selected per chunk (4.86 on average), which

leads to large quality difference (2.72 dB). In contrast, in GPU1, a

larger number of anchor frames are chosen per chunk (18.0), but the

quality gain per anchor frame greatly decreases (0.17 dB). Anchor

frames are under-/over-selected in GPU0 and GPU1, respectively.

Using other load balancing schemes [22, 31, 36] for neural in-

ference (e.g., hashing, least connection, shorted expected delay)

cannot resolve the problem because they do not manage resources

in an anchor-frame granularity.

Insight #3. To attain high resource efficiency on a computing clus-
ter, we need a resource allocation scheme that considers the unique
characteristics of neural video enhancement.

4 NEUROSCALER OVERVIEW
Goal. Motivated by the limitations of neural-enhanced live stream-

ing, our goal is to reduce the cost of end-to-end neural enhancement

and maximize overall quality gain on a computing cluster.

Scope. Neural-enhanced live streaming involves additional DNN

training and neural enhancement cost. In this paper, we scope our

work to reduce the end-to-end neural enhancement cost because it

is significantly more expensive than the training cost. For example,

LiveNAS [85] uses three GPUs for the enhancement, while only one

GPU for the training. The training cost can be further reduced by

sharing a super-resolution DNN across similar videos [71, 85, 97].

Decoder

Anchor scheduler (§5)

: Codec-level info

Stream 1

Stream N

Streams

Neural accelerators (e.g., GPUs,NPUs)

Pre-processor Infer engine Encoder

Queries () Anchor enhancer (§6)

[Memory]

Resource manager
Anchor selection
Load balancing

Figure 7: NeuroScaler overview

Stream

Ingest side Distribution side
CDN serversStreamer

720p
Media server

NeuroScaler

Transcoder

1080p-2160p

240p-720p

Figure 8: NeuroScaler deployment model

Overview. NeuroScaler takes an ingest stream and a DNN pair

and outputs a high-resolution stream; the DNN can also be dy-

namically updated through online learning as in LiveNAS. Figure 7

shows the overall workflow of NeuroScaler that consists of the

anchor scheduler (§5) and the anchor enhancers (§6). The sched-

uler decodes ingest streams and selects the most beneficial anchor

frames across the streams. Then, for each stream, the DNN and

the selected anchor frames are forwarded to the enhancers, which

are equipped with neural accelerators. The enhancers pre-process

a DNN, apply the DNN to the anchor frames, and re-encode the

super-resolved outputs. All the processes in the scheduler and the

enhancer are pipelined and parallelized to maximize the overall

processing throughput.

Deployment scenario. Figure 8 illustrates the deployment model

of NeuroScaler for adaptive streaming. When a low-quality stream

(e.g., 360p or 720p) is uploaded to a media server, NeuroScaler pro-

duces a higher-resolution stream using real-time super-resolution.

Lower-resolution versions (e.g., 240p-720p) are also created from the

ingest stream using a traditional transcoding pipeline [66]. By us-

ing NeuroScaler, clients can now watch high-resolution video even

when the ingest path becomes congested. Deploying NeuroScaler

on video conferencing is similar to the above process, but does not

require multi-resolution transcoding.

5 ANCHOR SCHEDULER
This section describes NeuroScaler’s anchor frame selection algo-

rithm (§5.1) and resource management modules (§5.2) that utilizes

the algorithm.

5.1 Zero-inference Anchor Frame Selection
Problem & Goal. To run selective super-resolution on live content,

both anchor frame selection and enhancement must be processed

in real time. To this end, we develop a zero-inference algorithm 1)

that selects anchor frames without any neural inferences, 2) while

798

NeuroScaler: Neural Video Enhancement at Scale SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

C
ou

nt

PS
N

R
 G

ai
n

(d
B

)

Video quality gain
Reference count

Key Alt-ref Normal0

1

2

3

0

5

15
20

10

(a) Frame type

0

0.5

1

0 0.5 1
Normalized ∆residual

r = 0.942

N
or

m
al

iz
ed

 q
ua

lit
y

ga
in

(b) Residual

Figure 9: Key observations on anchor frames

offering comparable quality to that of the algorithm running the

per-frame inference.

Insight. Our key observation is that the benefit of using an anchor

frame can be estimated by information from a video codec, without

actual neural inferences. In particular, the benefit critically depends

on frame type and residual:

Frame type: Frames inside a compressed video have dependencies

in the form of a directed graph. There are special types of video

frames with a high degree of reference, and using them as anchor

frames delivers larger quality improvements. For VP8/9 and AV1

codecs [5, 62], two types of frames belong to this category: 1) key
frames are the first frames of a group of pictures (GOP) and 2)

alternative reference frames are invisible frames only used for inter-

frame compression. To demonstrate this, we measure the quality

improvement on video chunks [68] when using an anchor frame per

frame type. Figure 9(a) indicates that key and alternative reference

frames have a higher reference count (within a graph of frames) and

deliver 1.2 dB, 0.5 dB higher quality in PSNR compared to normal

frames, respectively.

Residual: Reusing super-resolution results produces quality loss

due to residual (i.e., temporal difference) between frames (§2). Thus,

the gain of an anchor frame is proportional to the amount of loss

it reduces; but measuring this loss requires running actual selec-

tive super-resolution. Instead, our key observation is that this loss

can be approximated by the amount of residual an anchor frame

reduces, which can be easily calculated as in Equation 1. To demon-

strate this, we measure the reduced residual and the video quality

gain when using an alternative reference frame as an anchor frame.

Both values were normalized to between 0 and 1 within each video

chunk [19]. Figure 9(b) shows that there is a high correlation be-

tween quality gain and the reduced residual; the Pearson correlation

coefficient [80] (𝑟) is 0.942.

Design.Based on the observations above, we develop a zero-inference
anchor frame selector that leverages codec-level information (e.g.,

frame type, residual) to select beneficial anchor frames. Figure 10

illustrates the overall workflow:

1 Divide: The selector divides frames into groups based on their

type for each stream. There are a total of three groups in which

𝐺𝑘𝑒𝑦,𝐺𝑎𝑙𝑡𝑟𝑒 𝑓 , and 𝐺𝑛𝑜𝑟𝑚𝑎𝑙 have key frames, alternative reference

frames, and other frames, respectively. The groups have priorities in

selecting anchor frames in the order of𝐺𝑘𝑒𝑦,𝐺𝑎𝑙𝑡𝑟𝑒 𝑓 , and𝐺𝑛𝑜𝑟𝑚𝑎𝑙 .

2 Estimate: The selector estimates the benefit of using an an-

chor frame, referred to as anchor gain, for the frames in𝐺𝑎𝑙𝑡𝑟𝑒 𝑓 and

𝐺𝑛𝑜𝑟𝑚𝑎𝑙 . The anchor gain is calculated based on the accumulated

residual, using Algorithm 1 explained later in this section. For the

frames in𝐺𝑘𝑒𝑦 , we assume they have equal anchor gain as they do

Gkey

Stream 1

① Divide ② Estimate

G’key

G’altref

G’normal

Global

③ Merge & Sort ④ Select

AnchorsFrames

: : Estimating anchor gains

Galtref
1

Gnormal
2

1

2

3

Figure 10: Zero-inference anchor selection algorithm

not have an effect on accumulated residual. This does not harm the

overall performance because there are only a few key frames, and

all of them are commonly selected as anchor frames.

3 Merge & Sort: The selector merges per-stream groups into

global groups, where 𝐺
𝑔𝑙𝑜𝑏𝑎𝑙

𝑘𝑒𝑦
,𝐺

𝑔𝑙𝑜𝑏𝑎𝑙

𝑎𝑙𝑡𝑟𝑒 𝑓
, and 𝐺

𝑔𝑙𝑜𝑏𝑎𝑙

𝑛𝑜𝑟𝑚𝑎𝑙
contain key

frames, alternative reference frames, and normal frames of all

streams, respectively. Frames in the same group are sorted accord-

ing to the anchor gain.

4 Select: The selector iteratively chooses anchor frames from

the sorted global groups starting from𝐺
𝑔𝑙𝑜𝑏𝑎𝑙

𝑘𝑒𝑦
to𝐺

𝑔𝑙𝑜𝑏𝑎𝑙

𝑎𝑙𝑡𝑟𝑒 𝑓
and𝐺

𝑔𝑙𝑜𝑏𝑎𝑙

𝑛𝑜𝑟𝑚𝑎𝑙
.

To meet the real-time constraint, NeuroScaler measures the latency

of DNNs once and selects the maximum number of anchor frames

whose total latency is less than the available computing time.

Estimating anchor gain. In Step 2 , NeuroScaler uses residual

to estimate anchor gain using Algorithm 1 in Appendix A. The

algorithm first calculates accumulated residuals across frames (Al-

gorithm 1, line #2). It then iteratively selects the most beneficial

frame and estimates its anchor gain. For each iteration, it calculates

the amount of residual each frame reduces (line #6-8) as follows:

ΔRes(𝐹 [𝑖]) =
∑︁
𝑗

(
Res(𝐹 [𝑗])︸ ︷︷ ︸
𝐹 [𝑖]≠Anchor

− Res’(𝐹 [𝑗])︸ ︷︷ ︸
𝐹 [𝑖]=Anchor

)
=

𝑘−1∑︁
𝑗=𝑖

(
Res(𝐹 [𝑗]) − (Res(𝐹 [𝑗]) − Res(𝐹 [𝑖]))

)
=(𝑘 − 𝑖) × Res[𝑖]

(1)

where Res(𝐹 [𝑗]) is accumulated residual of the 𝑗 th frame, and 𝑘

is the index of the closest frame at which the residual resets. The

residual is cleared at either a key frame or a frame whose anchor

gain was estimated in previous iterations. If such frames do not exist

within the given frames, the algorithm predicts that the residual

resets at the key frame of the next video chunk. Next, it selects the

frame that reduces the residual the most and sets its anchor gain

as the amount of reduced residual (line #12,13). Lastly, it updates

the accumulated residual of each frame to reflect the impact of the

chosen frame (line #14). To quickly estimate the anchor gain, the

total residual pixel value is approximated as the size of an encoded

residual frame. This has a minimal impact on quality (=Δ0.05 dB in

PSNR) because both values are highly correlated.

5.2 Anchor-aware Resource Management
Goal & Challenge. Our goal is to maximize the overall quality

improvement when processing a large number of streams. For this,

we want NeuroScaler to optimally allocate computing resources for

each stream, while balancing the load. However, this is challenging

because the quality gain and the computing overhead of anchor

frames are heterogeneous across streams and can change over time.

799

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Yeo et al.

Centralized anchor scheduler

Anchor
selector

Anchor-level
load balancer

Anchor enhancers

: Frame : Anchor Frame

Anchor frames Per-instance queuesPer-stream frames
Figure 11: Anchor-aware scheduler overview

In particular, the stream-level load balancers in §3 miss two

key opportunities for maximizing the quality. First, the scheduler

selects locally optimal anchor frames because it runs end-to-end

neural enhancement per instance. Second, the scheduler suffers

from an imbalance in per-stream anchor frames across instances.

The computing overhead of stream processing is non-deterministic;

it dynamically changes according to several factors such as anchor

frames per stream and available resources. This leads to an imbal-

ance in per-instance load, which in turn causes an imbalance in

per-stream anchor frames.

Design. To resolve the challenge, wemake two design choices. First,

to choose an optimal set of anchor frames, we run a global anchor
frame selection across all streams. Second, to mitigate the two

types of imbalance, we distribute the load to instances at an anchor-
frame granularity, in which the overhead of anchor frames can

be accurately estimated. To this end, we propose an anchor-aware
resource scheduler consisting of two main modules, as illustrated in

Figure 11.

1 Global anchor frame selector runs at a centralized server

to select the most beneficial anchor frames across all video streams.

In particular, it periodically runs the zero-inference algorithm (§5.1),

choosing the largest number of anchor frames that can be processed

in real time on a computing cluster as follows:

max

𝑁

(𝑁∑︁
𝑖=1

𝑇𝐷𝑁𝑁 (𝐴𝐹 [𝑖]) ≤ 𝑇𝑖𝑛𝑡𝑣 ×𝑀

)
where 𝐴𝐹 is anchor frames sorted by the anchor gain; 𝑇𝐷𝑁𝑁 is the

DNN latency; 𝑇𝑖𝑛𝑡𝑣 is the anchor frame selection interval, which

is a configurable parameter; and 𝑀 is the number of computing

instances in the cluster. In this study, we use 𝑇𝑖𝑛𝑡𝑣 = 666ms (40

frames for 60 fps video) unless otherwise noted. Such global anchor

frame selection allows us to mitigate an imbalance in per-stream

anchor frames.

In general, using the longer scheduling interval can increase

quality by selecting more impactful anchor frames, as shown in

Figure 29 in Appendix C. However, this incurs higher end-to-end

latency; thus the interval must be adjusted according to the appli-

cation requirement.

2 Anchor-level load balancer, after selecting anchor frames,

dynamically balances the loads among the computing instances

at an anchor-frame granularity. To do so, the resource scheduler

divides the selected anchor frames into per-instance groups, where

frames in each group are forwarded to and processed at the cor-

responding computing instance. To meet the real-time constraint,

the resource scheduler assigns the maximum number of anchor

frames for each group, whose total latency is below the anchor

frame selection interval (𝑇𝑖𝑛𝑡𝑣). Such anchor-level load balancing

allows us to mitigate an imbalance in per-instance load.

Video

Anchors

Reuse

Anchor
Video

Frame

Hybrid encoder (Server)

Transfer

Decode
Decode

Reuse

Decode

Anchor?

No

Yes
Hybrid decoder (Client)

InsertEncoding

Figure 12: Hybrid codec: overall workflow

Trade-offpolicies.There is a trade-off between quality and through-

put. More streams can be processed per instance by reducing the

number of anchor frames per stream, which results in lower qual-

ity due to the reduced computations. NeuroScaler provides two

different trade-off policies:

The cost-effective policy operates at the knee point of the curve

between cost and quality gain; refer to Figure 16 in §8.1. Increasing

the cost beyond this point returns the marginal quality gain while

decreasing the cost greatly degrades the quality. To find this knee

point, an operator needs to profile a trade-off between the fraction

of anchor frames and quality gain over representative videos. With

this policy, resource auto-scaling is required to support all incoming

live streams; thus, NeuroScaler dynamically provides the number of

computing instances needed as 𝑐𝑒𝑖𝑙 (𝑇𝐷𝑁𝑁 (𝐴𝐹)
𝑇𝑖𝑛𝑡𝑣

), where𝑇𝐷𝑁𝑁 (𝐴𝐹)
is the latency of anchor frame enhancement.

The latency-sensitive policy selects the same fraction of anchor

frames as above, but the scheduling interval is set to 66ms (4 frames

for 60 fps video) to satisfy the delay requirement (200ms) of live

video conferencing [52].

6 ANCHOR ENHANCER
This section describes NeuroScaler’s hybrid codec (§6.1) and GPU

context switching optimizations (§6.2).

6.1 Hybrid Video Encoding
Problem & Goal. End-to-end neural enhancement requires (re-

)encoding, but traditional video encoders (e.g., VPx [28], H.26x [9,

10]) are computationally expensive and become a main computa-

tional bottleneck (§3). Thus, we aim to develop a lightweight codec

that can compress high resolution streams at least as fast as our se-

lective inference, such that they do not become a bottleneck, while

offering comparable quality to the existing codecs. This lightweight

codec allows us to process end-to-end neural enhancement at the

speed of selective super-resolution.

Insight. Our key observation is that non-anchor frames can be by-

passed when (re-)encoding the output of selective super-resolution.

This is because non-anchor frames can be easily reconstructed at the

client side even with commercial mobile devices without significant

overhead [101]. Such by-passingwould allow us to encode the target

video very fast. In addition, as the non-anchor frames are directly

sent at low resolution without up-scaling, this further leaves room,

in terms of bandwidth, for encoding the anchor frames at high

quality. Motivated by these observations, we devise a hybrid codec,
which is specialized for encoding selective super-resolution outputs.

Figure 12 illustrates the overall workflow of the hybrid codec.

Hybrid encoding (server-side). In contrast to traditional en-

coders, the hybrid encoder utilizes both video and image codecs in

800

NeuroScaler: Neural Video Enhancement at Scale SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

a synergistic way. It reuses the input video stream and compresses

only super-resolved anchor frames using an image codec, while

offloading non-anchor frame reconstructions to clients. Each an-

chor frame size is equally set to meet the bitrate constraint in live

streaming. Next, the hybrid encoder packages the encoded video

and super-resolved anchor frames in a single file, which is later

delivered to the clients. A new header attached to each frame con-

tains the frame type (i.e., anchor or non-anchor frame) and the

super-resolved frame for an anchor frame.

The hybrid encoder has two key advantages. First, it reduces the

computing overhead by 78.6-235.8× compared to a video encoder

(§8.2). This is because the hybrid encoder applies a lightweight

image codec, which is ∼6.25× cheaper than a video encoder, only to

a few anchor frames (5-10% of all frames). Second, because anchor

frames are sparsely spread apart within a video chunk, applying an

image codec to a few frames has a minimal effect on compression

efficiency; the Bjontegaard rate difference (BD-rate) [73] improves

by 6.69% when using the hybrid encoder compared to re-encoding

a video using a traditional encoder (§8.2).

Hybrid decoding (client-side). The hybrid-encoded stream is de-

coded at the client, as shown in Figure 12.When a compressed frame

arrives, the hybrid decoder first checks if the current frame is an

anchor frame. If it is, the decoder decodes the super-resolved frame

and caches it in memory. Otherwise, the codec reuses previous

super-resolved frames to up-scale the current frame by leveraging

codec-level information (§2). Decoding a hybrid-encoded stream in-

curs minimal overhead. Our evaluation (§8.2) shows that the hybrid

decoder slightly increases energy consumption by 18% compared

to a traditional decoder.

6.2 Optimizing GPU Context Switching
We aim to efficiently execute super-resolution DNNs on inference-

optimized frameworks (e.g., TensorRT [42], TVM [3]). However, in

neural-enhanced live streaming, naively using these frameworks

severely degrades the speed due to two types of GPU context switch-

ing overhead (§2).

Problem (DNN update). Model optimization (§2) can make in-

ference faster, but it commonly takes several seconds to minutes

depending on the DNN size. Thus, translating the benefit of this

optimization to the live streaming context is challenging. Because

a DNN can be updated online, the optimization must be done in

real time.

Model pre-optimization. To reduce the optimization latency, we

rely on our key observation that the model optimization result is

less relevant to its actual weight values. Based on this, we pro-

pose a model pre-optimization scheme in which the optimization

takes place offline and occurs just once. Before live streaming be-

gins, NeuroScaler takes a randomly initialized “mock” DNN and

pre-optimizes it on a target accelerator. Next, when a DNN needs

optimization during live streaming (§4), our system generates the

optimized version using the mock DNN, which was optimized of-

fline. This involves replacing the parameters of the mock DNN with

those of the target DNN. This scheme reduces the latency from tens

of seconds to several milliseconds (§8.2).

Problem (DNN loading). Multiple DNNs/frames arrive at each

anchor enhancer per scheduling interval (§5.2); thus device/host

memory must be frequently allocated/freed. Such overhead is com-

parable to that of neural inference when it comes to high-resolution

(4K/8K), because several MBs/GBs of host/device memory are re-

quired per DNN, respectively.

Memory pre-allocation. To avoid the frequent memory alloca-

tion overhead, we pre-allocate host/device memory and construct a

memory pool when a program launches. In Appendix A, we describe

the memory management scheme that considers the characteris-

tics of neural super-resolution. This scheme makes the overhead

negligible regardless of the requested memory size.

7 IMPLEMENTATION
NeuroScaler is implemented upon commercial frameworks includ-

ing libvpx (v1.10) [33], TensorRT (v8.0.3) [53], libjpeg-turbo (v2.1.2) [32],

Kakadu H2JTK (v8.2.1) [30], and gRPC (v1.42.0) [24]. NeuroScaler

consists of ∼10.1K lines of code.

Decoder.We extend libvpx, which is a reference software imple-

mentation of VP9. The original decoding API only outputs a de-

coded visible frame, but we need codec-level information (e.g., resid-

ual, frame type) and invisible frames for anchor frame selection

and enhancement, respectively. Therefore, we modify the decoding

API (vpx_codec_get_frame) to additionally return this informa-

tion. Next, we parallelize per-stream decoding on multiple CPU

threads. Since frames within the same stream have dependency for

decoding, we allocate a dedicated thread for each stream.

8 EVALUATION
We evaluate NeuroScaler by answering the following questions.

◦ Does NeuroScaler effectively improve the end-to-end process-

ing throughput?

◦ How does each design component of NeuroScaler contribute

to the overall performance?

◦ Does NeuroScaler effectively maximize the overall quality of

multiple streams?

Hardware. Experiments were conducted on AWS EC2 g4dn in-

stances [8] that have Intel 2.5 GHz Cascade Lake CPUs and NVIDIA

T4 GPUs. Table 1 in Appendix B presents their specifications and

prices. We ran neural inference on the GPUs and other processes

(e.g., decoding, encoding, anchor frame selection) on the CPUs.

Video. We setup raw videos and encoded them for ingest and

distribution as follows:

Setup: We used videos from the top six most-watched content cat-

egories on Twitch in 2021 [34]. Because Twitch does not provide

2160p, 60 fps video, we downloaded videos from Youtube with the

same content. For each category, we sorted videos by view count

and selected the top video that supports 2160p, 60 fps and is at least

20 minutes long [16–21].

Ingest: We used the VP9 codec following the Youtube Live set-

tings [69]. Group of picture (GOP), frame rate, and bitrates were

respectively configured as 2 seconds, 60 fps, and {0.7, 4.125, 6.75,

35.5}Mbps (for {360, 720, 1080, 2160}p video). Detailed codec param-

eters we use are specified in Appendix B. Unless otherwise noted,

the first 20 minutes of 720p videos were used. Note that 720p is

most widely used for broadcasting in Twitch, whereas 2160p is

rarely used [1, 11].

801

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Yeo et al.

Per-frame

Neuro
Scaler

0
2
4
6
8

10

#s
tre

am
s

SW SW HW
(Ctx-Opt)

Key+Uniform

SW SW HW
0 0x1 x1 x2

x4

x10

(Ctx-Opt)

(a) End-to-end processing throughput

Original Per-frame Key + Uni NeuroScaler

25
30
35
40
45
50

Chat GTA LoL Fortnite Valorant Minecraft

PS
N

R
 (d

B
) +6.3dB

+3.3dB +7.3dB
+1.7dB

+4.9dB
+4.3dBNeuroScaler’s gain

(b) Quality gain of neural enhancement

Figure 13: NeuroScaler greatly improves end-to-end processing throughput compared to the baselines under similar SR quality.
(SW/HW: Software/Hardware codec, Ctx-Opt: Context switching optimization)

0
0.4
0.8
1.2
1.6

Per-frame

SW HW

Key + Uniform
Neuro
Scaler

x1x3.0

x11.1

x22.3 x22.3

C
os

t/s
tre

am
 ($

)

(Ctx-Opt)
SW HW

(Ctx-Opt)

Figure 14: End-to-end processing cost based on
cost-effective cloud GPU instances

Method #streams
Key+Uniform SR 0

Ctx-Opt 2

Ctx-Opt + Anchor-Sel 2

Ctx-Opt + Hybrid-Enc 4.33

Ctx-Opt + Hybrid-Enc

+ Anchor-Sel

10

Figure 15: End-to-end throughput
breakdown of NeuroScaler

6

6.5

7

7.5

0 0.1 0.2

PS
N

R
 (d

B
)

Cost/stream ($)

Cost-effective
mode

Figure 16: Trade-off btw cost
and quality in NeuroScaler

Distribution:We compressed super-resolved frames as follows. First,

for per-frame encoding, the software VP9 codec [33] and the hard-

ware H.265 codec [40] were used with the same configuration as

above; both codecs show a similar level of compression efficiency.

Next, for hybrid encoding, the software JPEG2000 codec [30] was

used with the quantization parameter (QP) as Table 2 in Appendix

B.

Super-resolution DNN. We used the “high-quality” DNN from

NAS [102], which has 8 residual blocks, 32 channels, and a scale

factor of 3. To emulate the benefit of online learning as in Live-

NAS [85], a content-aware DNN was trained per video with the

first 10 minutes and tested with the last 10 minutes. However,

NeuroScaler is orthogonal to how the super-resolution network is

trained. The cost-effective mode (§5.2) was used for NeuroScaler

unless otherwise noted.

8.1 End-to-End Performance
To demonstrate NeuroScaler delivers significant improvement in

scalability, we compare NeuroScaler with two end-to-end neural

enhancment baselines:

◦ Per-frame baseline applies a DNN to every frame and encodes

the output using the traditional video codec; the state-of-the-

art neural-enhanced live streaming (LiveNAS [85]) adopts this

approach.

◦ Selective baseline applies a DNN to every key frame and
equally-spaced frames (Key+Uniform), while using the same

codec as above.

For fair comparison, we configure the baselines, as best as possible,

to achieve the same quality as NeuroScaler. For this, we adjust the

DNN size for the per-frame baseline and the number of anchor

frames for the selective baseline. Table 3 in Appendix B shows the

configuration per content.

Throughput improvement. Figure 13(a) illustrates the average
end-to-end neural enhancement throughput across the six videos

1
.

The maximum number of streams that can be processed in real

time was measured on the g4dn.12xlarge instance that has 48

vCPUs and 4 GPUs. NeuroScaler significantly improves the end-

to-end processing throughput by 10× and 2.5-5× compared to the

per-frame and the selective baseline, respectively. Without the GPU

context switching optimization (§6.2), both baselines cannot process

even a single stream in real time. With the optimization, the end-to-

end performances of the per-frame and the selective baseline are

constrained by the inference and encoding overhead, respectively.

Quality gain. Figure 13(b) shows the original and neural-enhanced
video quality in PSNR; the error bars represent one standard de-

viation from the average. The quality was measured between the

raw video and the compressed (super-resolved) video. NeuroScaler

consistently delivers large quality improvements by 1.65-7.33 dB

(4.63 dB on average) compared to the original video. The absoulte

PSNR of NeuroScaler ranges from 34.5 dB (“Fortnite”) to 43.2 dB

(“Minecraft”); Note that the quality difference between the baselines

and NeuroScaler is minimal (0.215 dB on average). In Appendix

C, we demonstrate that NeuroScaler’s gain is also significant in

VMAF [55] in Table 5, which is a widely-used video quality metric;

we present the snapshots of video samples in Figures 30, 31, and 32.

Cost saving. To compare the end-to-end processing cost, we select

the most cost-effective computing instance for each approach. Fig-

ure 14 compares the per-stream cost
1
. It shows that NeuroScaler

significantly reduces the cost by 22.3× and 3.0-11.1× compared to

the per-frame and selective baselines (with the GPU context switch-

ing optimization), respectively. Table 4 in Appendix C lists the most

cost-effective instance type and the number of instances needed

per 100 streams for each approach.

1
We omit the standard deviation in the figure as the number of real-time streams

or the processing cost is the same across contents.

802

NeuroScaler: Neural Video Enhancement at Scale SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Selection Enhancement

Per
frame NEMO Key

+ Uni
Neuro
Scaler

0

0.5

1.0

1.5

N
or

m
al

iz
ed

 G
PU

 u
sa

ge

0.110.25

1.51

1.0

Figure 17: SR inference
resource usage

0
400
800

1200
1600

0 4 8 12 16

#S
tre

am
s

#CPU threads

NEMO NeuroScaler

0

Figure 18: Anchor frame
selection throughput

5
6
7
8
9

0 5 10 15 20 25

PS
N

R
 g

ai
n

(d
B

)

Fraction of anchor frames (%)

Key+Uni NEMO NeuroScaler

Figure 19: Anchor frame
efficiency in quality gain

0
0.2
0.4
0.6
0.8

1

7.5 5 2.5
Fraction of anchor frames (%)

Per-frame NeuroScaler
1.0 1.0 1.0

N
or

m
al

iz
ed

 C
PU

 u
sa

ge

1e-2 8e-3 4e-3

Figure 20: Video encoding
resource usage

NeuroScaler’s large cost reduction (up to 22.3x) comes from the

fact that NeuroScaler greatly reduces both CPU and GPU usage,

which enables NeuroScaler to run onmore economic instance types.

Table 7 in Appendix C quantifies this resource saving. The reduced

GPU usage is due to selective inference with the zero-inference al-

gorithm (§5.1) and the context switching optimization (§6.2). The re-

duction in CPU usage comes from the use of the hybrid codec (§6.1).

As a result, NeuroScaler runs on more economic instances, such as

g4dn.xlarge (4 vCPUs per GPU), in contrast to g4dn.12xlarge
(12 vCPUs per GPU) used in Figure 13(a).

Contributions by individual components. Figure 15 illustrates
the throughput breakdown ofNeuroScaler using the g4dn.12xlarge
instance that has four GPUs.We testedmultiple versions of NeuroScaler

by selectively applying the zero-inference anchor selection (§5.1),

the hybrid encoding (§6.1), and the context switching optimiza-

tion (§6.2). The result shows that all components significantly con-

tribute to the improvements in the number of streams. The context

switching optimization enables processing two streams in real time

(1st→2nd row), while the vanilla selective SR fails to support even

a single live stream. The number of streams is increased by 2.16×
due to the hybrid codec (2nd→4th row) and by 2.30× due to the

zero-inference anchor selection (4th→5th row).

Cost-effective mode. The default cost-effective mode (§5.2) bal-

ances the quality and the cost. To demonstrate this, we measured

the quality gain against the cost per stream for the “League of

Legends” video [19], as shown in Figure 16. Increasing the cost

(33.3-100%) beyond this mode returns the marginal quality gain

(0.07-0.12 dB). Otherwise, reducing the cost (33.3-66.6%) greatly

sacrifices the quality by 0.37-1.14 dB.

End-to-end latency.NeuroScaler can support live adaptive stream-

ing and video conferencing using the cost-effective and latency-

sensitive policy, respectively. To demonstrate this, we benchmark

the former and latter policy on the g4dn.xlarge and g5dn.2xlarge
instance; the latter has a NVIDIA A10 GPU. Table 8 in Appendix

C shows the end-to-end latency and its breakdown. First, the cost-

effective mode incurs delay of 669ms on average (±338ms standard

deviation). Since traditional live streaming (e.g., Twitch) incurs

dealy of several seconds [27, 60], the addition latency from neural

enhancement has a minimal impact. Second, the latency-critical

mode produces delay of 90.8ms on average (±25.8ms), which sat-

isfy the delay requirement (200ms) of video conferencing [52]. The

delay can be further reduced, if needed, by decreasing the anchor

frame selection interval (𝑇𝑖𝑛𝑡𝑣) and/or running DNNs on more ad-

vanced accelerators [37, 43] which provide lower latency.

8.2 Component-wise In-depth Analysis
We provide an in-depth performance analysis of individual system

components.

NeuroScaler’s anchor selector (§5.1) with selective inference

greatly reduces the cost of super-resolution compared to the exist-

ing approaches. This is because this selector can choose beneficial

anchor frames very fast.

Resource saving: Figure 17 shows the average GPU usage for neu-

ral super-resolution over the six videos; all approaches deliver

similar quality (average Δ|PSNR| = 0.215 dB). The GPU usage was

normalized by that of the per-frame SR. NeuroScaler reduces the

GPU usage by 9.48×, 14.33×, and 2.33× compared to the per-frame,

NEMO-selective, and uniform-selective SR, respectively. In contrast,

the NEMO-selective SR even increases the GPU usage by 57% com-

pared to the per-frame counterpart because of the anchor frame

selection overhead; it requires per-frame inference with a larger

DNN to achieve the similar quality.

Throughput: Figure 18 illustrates the anchor frame selection through-

put against the number of CPU threads. NeuroScaler can process

100 streams per CPU thread (with 4.13ms delay), whereas NEMO

cannot run it on CPU in real time.

Quality: Figure 19 shows the PSNR gain against the fraction of

anchor frames for the “League of Legends” video [19]. NeuroScaler

’s anchor frames deliver comparable quality gain to those of the

NEMO: up to 0.27 dB higher (fraction ≥ 7.5), up to 0.14 dB lower

(fraction < 7.5). Compared to selecting key and equally-spaced

frames as anchor frames, NeuroScaler can achieve the same quality

with 2.5-3× fewer anchor frames.

NeuroScaler’s hybrid codec (§6.1) greatly reduces the cost com-

pared to re-encoding at the ingest server, while maintaining high

compression efficiency. At the same time, it incurs minimal decod-

ing overhead at the client.

Resource saving: Figure 20 shows the average CPU usage for the hy-

brid video encoding (JPEG2000) and the per-frame video encoding

(VP9); both approaches deliver similar quality (average Δ|PSNR|
=0.01 dB). These encoders were tested on various fractions of an-

chor frames, and the CPU usage was normalized by that of the

per-frame encoding. NeuroScaler reduces the CPU usage by 78.6-

235.8× compared to the per-frame encoding. The speedup becomes

higher as the fraction of anchor frames reduces.

Throughput: Figure 21 illustrates the processing throughput against
the number of CPU threads. NeuroScaler can process 81 streams

with 16 CPU threads, while the traditional codec can encode only a

single stream.

803

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Yeo et al.

0
20
40
60
80

100

0 4 8 12 16

#S
tre

am
s

#CPU threads

Per-frame NeuroScaler

0 1

Figure 21: Video encoding
throughput

39.5

39.6

39.7

39.8

18 22 26 30 34 38

PS
N

R
 (d

B
)

Bitrate (Mbps)

Per-frame NeuroScaler

Figure 22: Video encoding
efficiency (Distribution-side)

Throughput (fps)
0 15 30 45

Energy (J)
0 0.05 0.1 0.15

Per-frame
Real-time

Per-frame

Scaler
 Neuro

Neuro
Scaler

Figure 23: Video decoding
overhead on a smartphone [67]

Baseline

Latency (ms)

[Optimization]

1 100 10000

Baseline

Latency (µs)

Host Device

[Loading]

1 100 10000

Neuro
Scaler

Neuro
Scaler

Figure 24: GPU context
switching overhead

0

1

2

3

Avg 90%-tile95%-tile

PS
R

N
 d

iff
 (d

B
)

Worst
NeuroScaler

Round-robin: Mean Best

-0.19dB

-0.72dB
-1.11dB

B
et

te
r

(a) Quality difference

Round-robin (worst)
NeuroScaler

0
0.2
0.4
0.6
0.8

1

0 5 10 15

C
D

F

Fraction of anchor frames (%)
(b) #anchor frames

Figure 25: The benefits of the anchor-level load balancer

Compression efficiency: Figure 22 illustrates the quality against the

bitrate using the same video as above. The NeuroScaler’s codec de-

livers comparable quality to the per-frame encoding (VP9). Overall,

the hybrid codec slightly increases BD-rate [73] by 6.69%, which is a

widely-used quality metric for compressed video, while processing

78.6-235.8× faster than the per-frame codec as shown above.

Decoding overhead: We benchmark the throughput and per-frame

power consumption of the hybrid and traditional decoder on a

smartphone [67], which has the Qualcomm Snapdragon 855 proces-

sor [49]. Figure 23 shows the throughput and energy consumption

when decoding a 4K, 30 fps video [68] on the mobile CPU (4 threads).

The hybrid decoding satisfies the real-time constraint, while slightly

increasing the energy consumption by 18% compared to the tra-

ditional decoding (VP9). We expect that the energy consumption

can be reduced as the current implementation is an un-optimized

prototype which leaves room for improvement; e.g., it decodes an-

chor frames twice (with JPEG2000 and VP9), but such redundancy

can be removed. Using the desktop class-CPU (Intel i9-9900K [29]),

the hybrid decoder can process a 4K, 60 fps live video with a single

thread, as shown in Table 6 in Appendix C.

NeuroScaler’ GPU context-switching optimization (6.2) greatly

reduces the overhead of GPU context switching, as shown in Fig-

ure 24. First, themodel pre-optimizationmethod reduces the latency

of DNN compilation from 137 s to 13ms. Next, the memory pre-

allocation method reduces the latency of loading data (e.g., DNN,

frames) to GPU memory from 19.9-46.5ms to several microseconds.

These two optimizations improve the inference throughput by 2.79×
compared to running an unoptimized DNN using PyTorch [45].

NeuroScaler’s resource scheduler (§5.2) maximizes the quality

gain of selective inference. To demonstrate this, we measure the

quality difference from per-frame super-resolution for each video

chunk. We compare the quality with the anchor-agnostic scheduler
that 1) allocates video streams to computing instances in a round-

robin way, and 2) selects/enhances anchor frames as NeuroScaler

per computing instance. We use eight servers [8], each with a single

Component Decoder Resource manager
Instance type c6i.32xlarge c6i.32xlarge

Latency 2.65ms 4.13ms
#streams 768 12800

Cost (per stream) ¢0.311 ¢0.0186
Figure 26: NeuroScaler’s anchor scheduler scalability

NVIDIA T4 GPU. 18 360p and 720p streams (total of 36 streams)

were up-scaled to 1080p and 2160p versions, respectively; this is the

maximum number of streams the cost-effective mode can process.

We repeated the experiments 1,000 times by randomly shuffling the

order of video streams.

Quality improvement: Figure 25(a) shows the average, 90%-tile,

and 95%-tile quality difference of video chunks, respectively; note

that NeuroScaler’s quality gain compared to the original videos

is 4.77 dB on average. The result shows that NeuroScaler’s sched-

uler effectively minimizes the quality difference and achieves a

consistent performance. Compared to the baseline, NeuroScaler

reduces the average, 90%-tile, and 95%-tile quality difference by up

to 0.19 dB, 0.71 dB, and 1.11 dB, respectively. In contrast, the anchor-

agnostic approach shows a large variation in quality difference

across iterations.

NeuroScaler’s gain comes from mitigating an imbalance in per-

stream anchor frames by the global scheduling of anchor frames

and anchor enhancement tasks. To highlight this, we compare the

fraction of anchor frames between NeuroScaler and the worst-case

baseline, as shown in Figure 25(b). In contrast to NeuroScaler that

balances anchor frames across streams, the baseline suffers from

an imbalance in per-stream anchor frames, which results from

imbalance in per-instance load (§3). In particualr, it 1) under-selects

anchor frames for 15% of streams, which results in large quality

difference, and 2) over-selects anchor frames for 50% of streams,

which results in small quality gain per anchor frame.

8.3 Scalability
Scheduler. NeuroScaler’s anchor scheduler (§4), which consists

of the decoder and the resource manager, can operate at scale.

Figure 26 shows the cost and the latency of each module using

the c6i.32xlarge instance [6] that has 128 vCPUs. The scheduler

overall costs ¢0.329 per stream, while the decoder and the resource

manager incurs 2.65ms and 4.13ms delay, respectively. Here, video

decoding and per-stream anchor gain estimation (Step 2 in Fig-

ure 10) are the main computational bottlenecks, but both of them

can be parallelized on multiple CPUs.

Case study (Twitch [57]). We estimate the operating cost for run-

ning NeuroScaler on a Twitch-scale service, which has 100,000 con-

current live streams. Figure 27 quantifies the cost using AWS EC2

804

NeuroScaler: Neural Video Enhancement at Scale SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Module Instance #instances Cost
Scheduler c6i.32xlarge 139 $332 per hour
Enhancer g4dn.xlarge 33,334 $7,566 per hour

All - - $7,898 per hour
Figure 27: NeuroScaler’s cost for a Twitch-scale service

instances [6, 8]. NeuroScaler’s neural enhancement costs $7,898

per hour, which is 21.3× less expensive than the per-frame counter-

part as used in LiveNAS [85]. The anchor scheduler and enhancer

accounts for 4.3% and 95.7% of the overall cost, respectively.

9 DISCUSSION
Codec neutrality.The design of NeuroScaler is codec neutral. First,
the zero-inference anchor frame selection (§5.1) can be applied

to any types of video codecs, since the algorithm uses features

that are generally supported in video codes: 1) multiple tiers of

frames varying on the degree of reference and 2) residual produced

by inter-frame compression. For example, to support the H.26x

codecs [25, 26], we only need to replace the VPx-/AV1-specific

frame groups (𝐺𝑘𝑒𝑦,𝐺𝑎𝑙𝑡𝑟𝑒 𝑓 , and 𝐺𝑛𝑜𝑟𝑚𝑎𝑙 in Figure 10) with the

H.26x-specific groups (𝐺𝐼 ,𝐺𝑃 , and𝐺𝐵). Second, the hybrid encoding

(§6.1) can accommodate any combinations of video codecs and

images codecs. It does not rely on features that are available only

for specific codecs. Lastly, the GPU context switching optimization

(§6.2) and the anchor-aware resource scheduling (§5.2) are agnostic

to video codecs.

Joint optimization. The performance of NeuroScaler can be fur-

ther improved by considering the interdependencies among selec-

tive inference, DNN training, and video encoding, which we leave

as future work. First, a DNN is applied only to anchor frames, while

each anchor frame delivers a different amount of benefit. Therefore,

a DNN can be trained more efficiently by 1) targeting anchor frames

(instead of randomly sampled frames), and 2) allocating training

time across anchor frames considering their benefit. Second, the

benefit of anchor frames largely depends on frame dependencies

within a video, but traditional video encoders construct such depen-

dencies without considering anchor frames. If a video is encoded

in an anchor-aware manner, the number of anchor frames could be

decreased while maintaining the same video quality.

10 RELATEDWORK
Accelerating super-resolution. Several studies [72, 87, 88] ac-
celerate super-resolution at an image-level or a video-level. First,

blocks within the same image have heterogeneous difficulty in re-

covering high-resolution counterparts. Based on this, MobiSR [88]

and ClassSR [87] use fewer computations on blocks that have lower

difficulty, accelerating image super-resolution. These approaches

can be applied to NeuroScaler to accelerate super-resolution on

anchor frames. Second, video has a large amount of temporal redun-

dancy, and super-resolution results can be reused over consecutive

frames. dcSR [72] and FAST [108] apply super-resolution only to

key frames, but this can greatly degrade quality on videos that

contain dynamic scenes [101].

Using super-resolution on ingest streams. Live neural-enhanced
streaming is gaining increasing popularity both in academia [85, 99,

100] and industry [38, 39, 54]. LiveNAS [85] runs super-resolution

on live ingest streams to enhance the video quality. Runespoor [99]

and CloudSeg [100] apply super-resolution to images from surveil-

lance cameras to improve video analytics. NVIDIA Maxine [39]

provides an SDK that supports super-resolution on NVIDIA GPUs,

and commercial live streaming services [38, 54] integrate this SDK

to improve the service quality. In NeuroScaler, we greatly improve

its cost and resource efficiency.

Using super-resolution at clients. Recent studies [76, 101, 102,
105] utilize client computations to run video super-resolution. NAS [102]

applies super-resolution to adaptive streaming. Parsec [76] and Vo-

luSR/YuZu [104, 105] use super-resolution for 360-degree and volu-

metric video streaming, respectively. NEMO [101] enables super-

resolution on commercial mobile devices. These efforts focus on

improving the quality at the distribution side and are orthogonal

to our approach that improves the ingest stream quality.

Improving live streaming.A large body of work has been devoted

to improving live streaming. First, at the ingest side, Salsify [79]

and Concerto [111] enable fast and accurate adaptation to band-

width fluctuations by reducing the mismatch between codecs and

transport protocols. Vantage [93] optimizes quality-of-experience

for time-shifted viewers by selectively re-transmitting previous

videos in higher quality. NeuroScaler is agnostic to ingest proto-

cols and can support these systems. Second, at the distribution

side, previous studies [83, 90, 92, 96, 103] propose better bitrate and

server selection algorithms. These efforts are orthogonal to our

approach as NeuroScaler targets improving ingest stream quality.

Lastly, SVE [82] proposes a scalable and distributed video process-

ing system used in Facebook. In contrast, NeuroScaler improves

the scalability of neural video enhancement.

Model serving. Several efforts have been devoted to DNN-based

model serving; they are orthogonal to our contributions. Clip-

per [75] proposes a layered architecture to ease the deployment of

model serving on various ML frameworks and devices. Nexus [95],

Clockwork [81], and InFaaS [94] improve the overall processing

throughput when co-locating multiple models with different SLOs.

All the works dynamically optimize batch size to benefit from paral-

lel processing on modern accelerators. Clockwork further provides

the predictable performance in tail latency, and InFaaS additional

adapts model-variants such as model architectures and hardware

platforms. These methods can be applied to NeuroScaler to co-

locate various types of streams in the same cluster.

11 CONCLUSION
In this paper, we looked at the scalability issues in neural-enhanced

live streaming. We found that end-to-end neural enhancement is

prohibitively expensive, and typical resource schedulers are ineffi-

cient for scale-out.We presented NeuroScaler, a scalable framework

for live neural enhancement that resolves the challenges by a holis-

tic approach. First, NeuroScaler enables selective inference in live

streaming by devising the zero-inference algorithm. Next, it devel-

ops the hybrid codec and the GPU context switching optimization

that allow us to process end-to-end neural enhancement at the

speed of selective inference. Lastly, it introduces the anchor-aware

resource management that maximizes the overall quality when

scaling out to a computing cluster. In our evaluation using a public

cloud, we show that NeuroScaler can deliver an order of magnitude

improvement in scalability.

805

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Yeo et al.

ACKNOWLEDGMENTS
We thank our anonymous reviewers for their constructive feedback.

Seungjun Lee and Seungho Baek contributed to the work in the

early days of NeuroScaler. This work was supported by Institute

for Information & communications Technology Promotion (IITP)

grant funded by the Korea government (Ministry of Science and

ICT) [No.2022-0-00117] and [No.2018-0-00693]. Dongsu Han is the

corresponding author.

REFERENCES
[1] 720p Is The Preferred Broadcasting Resolution On Twitch. https://parsec.app/

blog/720p-is-the-preferred-broadcasting-resolution-on-twitch-e5385a3ef08f.

[2] Amazon EC2 Inf1 Instances Website. https://cloud.google.com/tpu.

[3] Apache TVM Official Website. https://tvm.apache.org/.

[4] Apple HTTP Live Streaming Official Website. https://developer.apple.com/

streaming/.

[5] AV1 Official Website . https://aomedia.org/av1/.

[6] AWS EC2 C6i Instance Official Website. https://aws.amazon.com/ko/ec2/

instance-types/c6i/.

[7] AWS EC2 DL1 Instance Official Website. https://aws.amazon.com/ec2/

instance-types/.

[8] AWS EC2 G4 Instance Official Website. https://aws.amazon.com/ec2/

instance-types/g4/.

[9] AWS EC2 P4Instance Official Website. https://aws.amazon.com/ec2/

instance-types/p4/.

[10] AWS F1 Instance Website. https://aws.amazon.com/ec2/instance-types/f1/.

[11] The Best Streaming Bitrate and Resolutions for Twitch. https://bit.ly/32rX2Pe.

[12] Cisco Visual Networking Index Report. http://www.cisco.com/c/en/

us/solutions/collateral/service-provider/visual-networking-index-vni/

complete-white-paper-c11-481360.pdf.

[13] Cloud TPU Website. https://aws.amazon.com/ec2/instance-types/inf1/.

[14] CPU cores and threads per CPU core per instance type . https://docs.aws.amazon.

com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.

html.

[15] DASH Industry Forum Official Website. https://dashif.org/.

[16] Dataset: Chat Youtube video. https://www.youtube.com/watch?v=

TJoAy944MoM.

[17] Dataset: Fortnite Youtube video. https://www.youtube.com/watch?v=

LW4asVQsew0.

[18] Dataset: GTA5 Youtube video. https://www.youtube.com/watch?v=

jYglXGpaBSg.

[19] Dataset: League of legend Youtube video. https://www.youtube.com/watch?v=

Ku_q0O_kgGE.

[20] Dataset: Minecraft Youtube video. https://www.youtube.com/watch?v=

5gff3AGv7o8.

[21] Dataset: Valorant Youtube video. https://www.youtube.com/watch?v=

dqhVl11DypA.

[22] Deploying NVIDIA Triton at Scale with MIG and Kubernetes. https://bit.ly/

31X8zVQ.

[23] FFmpeg Official Website. https://www.ffmpeg.org/.

[24] gRPC Github Repository. https://github.com/grpc/grpc.

[25] H.264 Official Website . https://www.itu.int/rec/T-REC-H.264-200305-S/en.

[26] H.265 Official Website . https://www.itu.int/rec/T-REC-H.265.

[27] How Long is Twitch Stream Delay. https://onetwostream.com/blog/

twitch-delay/.

[28] How to ensure a full live-streaming experience. https://www.techradar.com/

news/how-to-ensure-a-full-live-streaming-experience.

[29] Intel® Core™ i9-9900K Processor Specifications. https:

//ark.intel.com/content/www/us/en/ark/products/186605/

intel-core-i99900k-processor-16m-cache-up-to-5-00-ghz.html.

[30] Kakadu Official Website. https://kakadusoftware.com/.

[31] Kubernetes Load Balancer Document. https://kubernetes.io/docs/concepts/

services-networking/_print/.

[32] libjpeg-turbo Github Repository. https://github.com/libjpeg-turbo/

libjpeg-turbo.

[33] libvpx Github Repository. https://github.com/webmproject/libvpx.

[34] Most watched games on Twitch in 2020. https://sullygnome.com/games/2020/

watched.

[35] NGCodec uses Amazon EC2 F1 instances with custom FPGAs running 4k Video

Compression. www.prlog.org/12604725.

[36] NGINX Load Balancer Document. https://docs.nginx.com/nginx/admin-guide/

load-balancer/http-load-balancer/.

[37] NVIDIA A100 Official Website. https://www.nvidia.com/en-us/data-center/

a100/.

[38] NVIDIA Maxine Hits the Scene to Create Real-Time Video Experiences. https:

//blogs.nvidia.com/blog/2021/04/12/ai-real-time-video-maxine/.

[39] NVIDIA Maxine Official Website. https://developer.nvidia.com/maxine.

[40] NVIDIA NVENC Documentation. https://docs.nvidia.com/video-technologies/

video-codec-sdk/ffmpeg-with-nvidia-gpu/.

[41] NVIDIA T4 Official Website. https://www.nvidia.com/en-gb/data-center/

tesla-t4/.

[42] NVIDIA TensorRT Official Website. https://developer.nvidia.com/tensorrt.

[43] NVIDIA V100 Official Website. https://www.nvidia.com/en-gb/data-center/

tesla-v100/.

[44] PNG Standard Website. https://www.iso.org/standard/29581.html.

[45] PyTorch Official Website. https://pytorch.org/.

[46] Real Time Streaming Protocol (RTSP) Specification. https://tools.ietf.org/html/

rfc2326.

[47] Real-time Transport Protocol (RTP) Specification. https://tools.ietf.org/html/

rfc3550.

[48] Scalable Video Coding (SVC) Extension for WebRTC. https://www.w3.org/TR/

webrtc-svc/.

[49] Snapdragon 855+/860 Mobile Platform. https://www.qualcomm.com/products/

snapdragon-855-plus-and-860-mobile-platform.

[50] SoftBank Solves KeyMobile Edge Computing Challenges Using NVIDIAMaxine.

https://bit.ly/3dJNq47.

[51] Streaming Ad Revenue to Double by 2026. https://yhoo.it/329mAjP.

[52] Sub-Second Latency Streaming & Live Viewer Interactivity Changing

the Video Landscape. https://www.limelight.com/resources/tech-brief/

sub-second-latency-streaming-changing-the-video-landscape/.

[53] TensorRT Official Website. https://developer.nvidia.com/tensorrt.

[54] Touchcast Unveils World’s First AI-Powered Event Platform Boosted by NVIDIA

Maxine Technology. https://touchcast.com/newsroom/nvidia-partnership?utm_

campaign=NVIDIA%20Partnership&utm_source=NVIDIA.

[55] Toward A Practical Perceptual Video Quality Metric. https://netflixtechblog.

com/toward-a-practical-perceptual-video-quality-metric-653f208b9652.

[56] Twitch Broadcasting Guidelines. https://stream.twitch.tv/encoding/.

[57] Twitch Official Website. https://www.twitch.tv/.

[58] Twitch Revenue and Usage Statistics (2022). https://www.businessofapps.com/

data/twitch-statistics/.

[59] Twitch Statistics. https://backlinko.com/twitch-users.

[60] Twitch Stream Delay: Everything You Should Know. https://bit.ly/3HGbPpI.

[61] VP9 codec parameters. https://www.webmproject.org/docs/

encoder-parameters/.

[62] WebM Official Website. https://www.webmproject.org/.

[63] WebRTC 1.0: Real-Time Communication Between Browsers. https://www.w3.

org/TR/webrtc/.

[64] WebRTC Official Website. https://webrtc.org/.

[65] WHAT AUDIENCES EXPECT FROM LIVE VIDEO. https://lp.livestream.com/

rs/582-GOU-684/images/NYmag.pdf.

[66] Wowza Transcoding Documents. https://www.wowza.com/docs/

wowza-transcoder.

[67] Xiaomi Mi9 Specifications. https://www.gsmarena.com/xiaomi_mi_9-9507.php.

[68] YouTube dataset (Product review). https://www.youtube.com/watch?v=

qY2BdjhPmSE.

[69] Youtube Live EncodingGuidelines. https://support.google.com/youtube/answer/

2853702?hl=en.

[70] Youtube Website. https://www.twitch.tv/.

[71] Duin Baek, Mallesham Dasari, Samir R Das, and Jihoon Ryoo. 2021. dcSR:

Practical Video Quality Enhancement Using Data-Centric Super Resolution.

(2021).

[72] Duin Baek, Mallesham Dasari, Samir R. Das, and Jihoon Ryoo. 2021. DcSR:

Practical Video Quality Enhancement Using Data-Centric Super Resolution. In

Proceedings of the 17th International Conference on Emerging Networking EXperi-
ments and Technologies (CoNEXT ’21). Association for Computing Machinery,

New York, NY, USA, 336–343. https://doi.org/10.1145/3485983.3494856

[73] Gisle Bjontegaard. 2001. Calculation of average PSNR differences between

RD-curves. VCEG-M33 (2001).
[74] Ying Chen, Qing Li, Aoyang Zhang, Longhao Zou, Yong Jiang, Zhimin Xu, Junlin

Li, and Zhenhui Yuan. 2021. Higher quality live streaming under lower uplink

bandwidth: an approach of super-resolution based video coding. In Proceedings
of the 31st ACM Workshop on Network and Operating Systems Support for Digital
Audio and Video. 74–81.

[75] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin, Joseph E Gonza-

lez, and Ion Stoica. 2017. Clipper: A {Low-Latency} Online Prediction Serving

System. In 14th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 17). 613–627.

[76] M. Dasari, A. Bhattacharya, S. Vargas, P. Sahu, A. Balasubramanian, and S. R.

Das. 2020. Streaming 360◦ Videos using Super-resolution. In Proceedings of the
IEEE International Conference on Computer Communications (INFOCOM).

[77] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, Aditya Ganjam,

Jibin Zhan, and Hui Zhang. 2011. Understanding the impact of video quality on

806

https://parsec.app/blog/720p-is-the-preferred-broadcasting-resolution-on-twitch-e5385a3ef08f
https://parsec.app/blog/720p-is-the-preferred-broadcasting-resolution-on-twitch-e5385a3ef08f
https://cloud.google.com/tpu
https://tvm.apache.org/
https://developer.apple.com/streaming/
https://developer.apple.com/streaming/
https://aomedia.org/av1/
https://aws.amazon.com/ko/ec2/instance-types/c6i/
https://aws.amazon.com/ko/ec2/instance-types/c6i/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/g4/
https://aws.amazon.com/ec2/instance-types/g4/
https://aws.amazon.com/ec2/instance-types/p4/
https://aws.amazon.com/ec2/instance-types/p4/
https://aws.amazon.com/ec2/instance-types/f1/
https://bit.ly/32rX2Pe
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
https://aws.amazon.com/ec2/instance-types/inf1/
 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html
 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html
 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html
https://dashif.org/
https://www.youtube.com/watch?v=TJoAy944MoM
https://www.youtube.com/watch?v=TJoAy944MoM
https://www.youtube.com/watch?v=LW4asVQsew0
https://www.youtube.com/watch?v=LW4asVQsew0
https://www.youtube.com/watch?v=jYglXGpaBSg
https://www.youtube.com/watch?v=jYglXGpaBSg
https://www.youtube.com/watch?v=Ku_q0O_kgGE
https://www.youtube.com/watch?v=Ku_q0O_kgGE
https://www.youtube.com/watch?v=5gff3AGv7o8
https://www.youtube.com/watch?v=5gff3AGv7o8
https://www.youtube.com/watch?v=dqhVl11DypA
https://www.youtube.com/watch?v=dqhVl11DypA
https://bit.ly/31X8zVQ
https://bit.ly/31X8zVQ
https://www.ffmpeg.org/
https://github.com/grpc/grpc
https://www.itu.int/rec/T-REC-H.264-200305-S/en
https://www.itu.int/rec/T-REC-H.265
https://onetwostream.com/blog/twitch-delay/
https://onetwostream.com/blog/twitch-delay/
https://www.techradar.com/news/how-to-ensure-a-full-live-streaming-experience
https://www.techradar.com/news/how-to-ensure-a-full-live-streaming-experience
 https://ark.intel.com/content/www/us/en/ark/products/186605/intel-core-i99900k-processor-16m-cache-up-to-5-00-ghz.html
 https://ark.intel.com/content/www/us/en/ark/products/186605/intel-core-i99900k-processor-16m-cache-up-to-5-00-ghz.html
 https://ark.intel.com/content/www/us/en/ark/products/186605/intel-core-i99900k-processor-16m-cache-up-to-5-00-ghz.html
https://kakadusoftware.com/
https://kubernetes.io/docs/concepts/services-networking/_print/
https://kubernetes.io/docs/concepts/services-networking/_print/
https://github.com/libjpeg-turbo/libjpeg-turbo
https://github.com/libjpeg-turbo/libjpeg-turbo
https://github.com/webmproject/libvpx
https://sullygnome.com/games/2020/watched
https://sullygnome.com/games/2020/watched
www.prlog.org/12604725
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/
https://blogs.nvidia.com/blog/2021/04/12/ai-real-time-video-maxine/
https://blogs.nvidia.com/blog/2021/04/12/ai-real-time-video-maxine/
https://developer.nvidia.com/maxine
https://docs.nvidia.com/video-technologies/video-codec-sdk/ffmpeg-with-nvidia-gpu/
https://docs.nvidia.com/video-technologies/video-codec-sdk/ffmpeg-with-nvidia-gpu/
https://www.nvidia.com/en-gb/data-center/tesla-t4/
https://www.nvidia.com/en-gb/data-center/tesla-t4/
https://developer.nvidia.com/tensorrt
https://www.nvidia.com/en-gb/data-center/tesla-v100/
https://www.nvidia.com/en-gb/data-center/tesla-v100/
https://www.iso.org/standard/29581.html
https://pytorch.org/
https://tools.ietf.org/html/rfc2326
https://tools.ietf.org/html/rfc2326
https://tools.ietf.org/html/rfc3550
https://tools.ietf.org/html/rfc3550
https://www.w3.org/TR/webrtc-svc/
https://www.w3.org/TR/webrtc-svc/
 https://www.qualcomm.com/products/snapdragon-855-plus-and-860-mobile-platform
 https://www.qualcomm.com/products/snapdragon-855-plus-and-860-mobile-platform
https://bit.ly/3dJNq47
https://yhoo.it/329mAjP
 https://www.limelight.com/resources/tech-brief/sub-second-latency-streaming-changing-the-video-landscape/
 https://www.limelight.com/resources/tech-brief/sub-second-latency-streaming-changing-the-video-landscape/
https://developer.nvidia.com/tensorrt
https://touchcast.com/newsroom/nvidia-partnership?utm_campaign=NVIDIA%20Partnership&utm_source=NVIDIA
https://touchcast.com/newsroom/nvidia-partnership?utm_campaign=NVIDIA%20Partnership&utm_source=NVIDIA
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://stream.twitch.tv/encoding/
https://www.twitch.tv/
https://www.businessofapps.com/data/twitch-statistics/
https://www.businessofapps.com/data/twitch-statistics/
https://backlinko.com/twitch-users
https://bit.ly/3HGbPpI
https://www.webmproject.org/docs/encoder-parameters/
https://www.webmproject.org/docs/encoder-parameters/
https://www.webmproject.org/
https://www.w3.org/TR/webrtc/
https://www.w3.org/TR/webrtc/
https://webrtc.org/
https://lp.livestream.com/rs/582-GOU-684/images/NYmag.pdf
https://lp.livestream.com/rs/582-GOU-684/images/NYmag.pdf
https://www.wowza.com/docs/wowza-transcoder
https://www.wowza.com/docs/wowza-transcoder
 https://www.gsmarena.com/xiaomi_mi_9-9507.php
https://www.youtube.com/watch?v=qY2BdjhPmSE
https://www.youtube.com/watch?v=qY2BdjhPmSE
https://support.google.com/youtube/answer/2853702?hl=en
https://support.google.com/youtube/answer/2853702?hl=en
https://www.twitch.tv/
https://doi.org/10.1145/3485983.3494856

NeuroScaler: Neural Video Enhancement at Scale SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

user engagement. ACM SIGCOMM computer communication review 41, 4 (2011),

362–373.

[78] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. 2015. Image super-

resolution using deep convolutional networks. IEEE transactions on pattern
analysis and machine intelligence 38, 2 (2015), 295–307.

[79] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S Wahby, and

Keith Winstein. 2018. Salsify: Low-latency network video through tighter

integration between a video codec and a transport protocol. In 15th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 18). 267–
282.

[80] David Freedman, Robert Pisani, and Roger Purves. 2007. Statistics (international

student edition). Pisani, R. Purves, 4th edn. WW Norton & Company, New York
(2007).

[81] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann, Ymir

Vigfusson, and Jonathan Mace. 2020. Serving {DNNs} like Clockwork: Per-
formance Predictability from the Bottom Up. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). 443–462.

[82] Qi Huang, Petchean Ang, Peter Knowles, Tomasz Nykiel, Iaroslav Tverdokhlib,

Amit Yajurvedi, Paul Dapolito IV, Xifan Yan, Maxim Bykov, Chuen Liang, et al.

2017. SVE: Distributed video processing at Facebook scale. In Proceedings of the
26th Symposium on Operating Systems Principles. 87–103.

[83] Junchen Jiang, Shijie Sun, Vyas Sekar, and Hui Zhang. 2017. Pytheas: Enabling

data-driven quality of experience optimization using group-based exploration-

exploitation. In 14th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 17). 393–406.

[84] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual losses for real-

time style transfer and super-resolution. In European conference on computer
vision. Springer, 694–711.

[85] Jaehong Kim, Youngmok Jung, Hyunho Yeo, Juncheol Ye, and Dongsu Han. 2020.

Neural-enhanced live streaming: Improving live video ingest via online learning.

In Proceedings of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols for
computer communication. 107–125.

[86] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. 2016. Accurate image super-

resolution using very deep convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 1646–1654.

[87] X. Kong, H. Zhao, Y. Qiao, and C. Dong. 2021. ClassSR: A General Frame-

work to Accelerate Super-Resolution Networks by Data Characteristic. In 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE
Computer Society, Los Alamitos, CA, USA, 12011–12020. https://doi.org/10.

1109/CVPR46437.2021.01184

[88] Royson Lee, Stylianos I Venieris, Lukasz Dudziak, Sourav Bhattacharya, and

Nicholas D Lane. 2019. Mobisr: Efficient on-device super-resolution through

heterogeneous mobile processors. In The 25th Annual International Conference
on Mobile Computing and Networking. 1–16.

[89] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee.

2017. Enhanced deep residual networks for single image super-resolution. In

Proceedings of the IEEE conference on computer vision and pattern recognition
workshops. 136–144.

[90] Hongqiang Harry Liu, Ye Wang, Yang Richard Yang, Hao Wang, and Chen Tian.

2012. Optimizing cost and performance for content multihoming. In Proceedings
of the ACM SIGCOMM 2012 conference on Applications, technologies, architectures,
and protocols for computer communication. 371–382.

[91] Zhenxiao Luo, Zelong Wang, Jinyu Chen, Miao Hu, Yipeng Zhou, Tom ZJ Fu,

and Di Wu. 2021. CrowdSR: enabling high-quality video ingest in crowdsourced

livecast via super-resolution. In Proceedings of the 31st ACMWorkshop onNetwork
and Operating Systems Support for Digital Audio and Video. 90–97.

[92] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural adaptive

video streaming with pensieve. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication. 197–210.

[93] Devdeep Ray, Jack Kosaian, KV Rashmi, and Srinivasan Seshan. 2019. Vantage:

optimizing video upload for time-shifted viewing of social live streams. In

Proceedings of the ACM Special Interest Group on Data Communication. 380–393.
[94] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos Kozyrakis. 2021.

{INFaaS}: Automated Model-less Inference Serving. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21). 397–411.

[95] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong, Matthai

Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019. Nexus: A GPU

cluster engine for accelerating DNN-based video analysis. In Proceedings of the
27th ACM Symposium on Operating Systems Principles. 322–337.

[96] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. 2020. BOLA: Near-

optimal bitrate adaptation for online videos. IEEE/ACM Transactions on Net-
working 28, 4 (2020), 1698–1711.

[97] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chun-

fang Liu. 2018. A survey on deep transfer learning. In International conference
on artificial neural networks. Springer, 270–279.

[98] Yiding Wang, Weiyan Wang, Duowen Liu, Xin Jin, Junchen Jiang, and Kai

Chen. 2021. Enabling Edge-Cloud Video Analytics for Robotics Applications. In

Proceedings of the IEEE International Conference on Computer Communications,
Virtual Conference. 10–13.

[99] Yiding Wang, Weiyan Wang, Duowen Liu, Xin Jin, Junchen Jiang, and Kai

Chen. 2021. Enabling Edge-Cloud Video Analytics for Robotics Applications.

In IEEE INFOCOM 2021 - IEEE Conference on Computer Communications. 1–10.
https://doi.org/10.1109/INFOCOM42981.2021.9488801

[100] Yiding Wang, Weiyan Wang, Junxue Zhang, Junchen Jiang, and Kai Chen. 2019.

Bridging the Edge-Cloud Barrier for Real-Time Advanced Vision Analytics. In

Proceedings of the 11th USENIX Conference on Hot Topics in Cloud Computing
(HotCloud’19). USENIX Association, USA, 18.

[101] Hyunho Yeo, Chan Ju Chong, Youngmok Jung, Juncheol Ye, and Dongsu Han.

2020. Nemo: enabling neural-enhanced video streaming on commodity mobile

devices. In Proceedings of the 26th Annual International Conference on Mobile
Computing and Networking. 1–14.

[102] Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo Shin, and Dongsu Han.

2018. Neural adaptive content-aware internet video delivery. In 13th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 18). 645–
661.

[103] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A control-

theoretic approach for dynamic adaptive video streaming over HTTP. In Proceed-
ings of the 2015 ACMConference on Special Interest Group on Data Communication.
325–338.

[104] Anlan Zhang, Chendong Wang, Bo Han, and Feng Qian. 2017. YuZu: Super-

resolution Enhanced Volumetric Video Streaming. In 14th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 22). 393–406.

[105] Anlan Zhang, Chendong Wang, Bo Han, and Feng Qian. 2021. Efficient Volu-

metric Video Streaming Through Super Resolution. In Proceedings of the 22nd
International Workshop on Mobile Computing Systems and Applications. 106–111.

[106] Cong Zhang and Jiangchuan Liu. 2015. On Crowdsourced Interactive Live

Streaming: A Twitch.Tv-Based Measurement Study. In Proceedings of the 25th
ACM Workshop on Network and Operating Systems Support for Digital Audio and
Video (NOSSDAV ’15). 55–60.

[107] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. 2018. Residual

dense network for image super-resolution. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 2472–2481.

[108] Zhengdong Zhang and Vivienne Sze. 2017. FAST: A framework to accelerate

super-resolution processing on compressed videos. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops. 19–28.

[109] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer

Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, et al. 2020. An-

sor: Generating high-performance tensor programs for deep learning. In 14th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
20). 863–879.

[110] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng. 2020.

Flextensor: An automatic schedule exploration and optimization framework for

tensor computation on heterogeneous system. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems. 859–873.

[111] Anfu Zhou, Huanhuan Zhang, Guangyuan Su, Leilei Wu, Ruoxuan Ma, Zhen

Meng, Xinyu Zhang, Xiufeng Xie, Huadong Ma, and Xiaojiang Chen. 2019.

Learning to coordinate video codec with transport protocol for mobile video

telephony. In The 25th Annual International Conference on Mobile Computing
and Networking. 1–16.

[112] Xiao Zhu, Subhabrata Sen, and Z Morley Mao. 2021. Livelyzer: analyzing the

first-Mile ingest performance of live video streaming. In Proceedings of the 12th
ACM Multimedia Systems Conference. 36–50.

807

https://doi.org/10.1109/CVPR46437.2021.01184
https://doi.org/10.1109/CVPR46437.2021.01184
https://doi.org/10.1109/INFOCOM42981.2021.9488801

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Yeo et al.

Appendices are supporting material that has not been peer-
reviewed.

A DESIGN DETAILS
Estimating anchor gain. Algorithm 1 shows how NeuroScaler

estimates the gains of anchor frames.

Algorithm 1 Per-group Anchor Gain Estimation

• candidates: frames within a group

1: function EstimateGain(candidates, frames)

2: residuals = CalcResidual(frames)

3: 𝑁 = |candidates|

4: while 𝑁 > 0 do 𝑁 -= 1

5: gain
max

= −∞
6: for 𝑖 = 1 to |candidates| do
7: if not candidates[index].done then
8: gain = CalcDiffResidual(residuals, 𝑖)

9: if gain > gain
max

then
10: indexmax = 𝑖

11: gain
max

= gain

12: candidates[indexmax].done = true

13: candidates[indexmax].gain = gain
max

14: UpdateResidual(residuals, indexmax)

15: function CalcResidual(frames)

16: residual = 0

17: for 𝑖 = 1 to |frames| do
18: if frames[𝑖]==KEY then residual = 0

19: else residual += frames[𝑖].residual

20: frames[𝑖].acc_residual = residual

21: function UpdateResidual(residuals, index)

22: Δ = residuals[index]

23: for 𝑖 = index to |residuals| do
24: if residuals[𝑖] == 0 then break
25: else residuals[𝑖] -= Δ

Memorymanagement.TheNeuroScaler’s memorymanagerman-

ages device and host memory pools during the inference as follows:

Device memory: The memory manager pre-allocates the entire ac-

celerator memory and equally divides it into 𝑁1 number of frag-

ments. Whenever NeuroScaler allocates/releases a super-resolution

DNN, the memory manager reserves/frees the fragment. We use the

number of fragments as 𝑁1 = 2 because this is enough for hiding

the device memory allocation latency; as a single super-resolution

DNN fully utilizes an accelerator, we do not run multiple DNNs

concurrently.

Host memory: The memory manager pre-allocates pinned host

memory that is sized to have 𝑁2 number of frames per resolution

(240p, . . . , 2160p). Then, the memory manager divides the allocated

memory into per-resolution fragments. Whenever NeuroScaler al-

locates/releases a video frame, the memory manager reserves/frees

the fragment. We set the initial number of per-resolution fragments

as 𝑁2 = 40 and double the number when there are no available

fragments.

B EXPERIMENTAL SETTINGS
Computing instances. Table 1 shows the specifications of AWS

EC2 instances used in our evaluation. The price is calculated based

on 3-year reserved instances in the US East(N. Virginia) region.

Instance type GPUs vCPUs Mem Price

g4dn.xlarge 1 4 16GB $0.227/hour

g4dn.2xlarge 1 8 32GB $0.325/hour

g4dn.4xlarge 1 16 64GB $0.520/hour

g4dn.8xlarge 1 32 128GB $0.940/hour

g4dn.16xlarge 1 64 256GB $1.880/hour

g4dn.12xlarge 4 48 192GB $1.690/hour

g5dn.2xlarge 1 8 16GB $0.524/hour

c6i.8xlarge 0 32 64GB $0.599/hour

Table 1: AWS EC2 instance specfications

VP9 parameters. We tune the VP9 encoding parameters to im-

prove the quality gains of anchor frames. The default CBR (constant

bitrate) mode does not include alternative reference frames, which

provide high efficiency as anchor frames. Instead, we use the con-

strained VBR mode and turn on the alternative reference frame

feature. Using this setting, we encode video by FFmpeg (v4.4) [23]

as follows:

◦ NeuroScaler: ffmpeg -i {input video} -c v libvpx-vp9 -vf
scale={width}x{height} -minrate {bitrate*0.5}
-maxrate {bitrate*1.5} -b v {bitrate} -keyint_min 120 -g
120 -auto-alt-ref 1 -lag-in-frames 16 -qmin 4 -qmax 48
-error-resilient 1 -quality realtime -speed {speed} -row-mt
1 -frame-parallel 1 {output video}

◦ Default CBR: ffmpeg -i {input video} -c v libvpx-vp9 -vf
scale={width}x{height} -b v {bitrate} -keyint_min 120 -g
120 -qmin 4 -qmax 48 -error-resilient 1 -quality realtime
-speed {speed} -row-mt 1
-frame-parallel 1 {output video}

0
2000
4000
6000
8000

0 100 200 300B
itr

at
e

(k
bp

s)

Chunk index

CBR NeuroScaler

Figure 28: Bitrate comparison

To demonstrate the feasibility of the new configuration for live

streaming, we analyzed the bitrate and the latency:

Bitrate: Figure 28 illustrates per-chunk bitrate using a 720p, 60 fps

video [19] in our dataset. The target bitrate is set to 4125 kbps. The

result shows that 1) our setting shows a similar bitrate compared

to the default CBR mode, and 2) the average bitrate of our setting

(4888 kbps) is closer to the target compared to that of the CBR

version (5104 kbps).

Latency: Using alternative reference frames incurs additional la-

tency because the VP9 codec needs to look up candidate frames in

the future. The delay can be adjusted by –lag-in-frame option,

which is the maximum number of frames into the future that the

codec can refer [61]. We set it as 16, which causes 266ms delay,

unless otherwise noted.

JPEG/JPEG2000 parameters. Table 2 shows the quantization pa-

rameters (QP) for encoding JPEG/JPEG200 images; a higher QP

value results in larger files (with higher quality). We adjust the

808

NeuroScaler: Neural Video Enhancement at Scale SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Fraction of anchor frames JPEG JPEG2000

10% < Fraction ≤ 15% - 85

7.5% < Fraction ≤ 10% 80 90

5% < Fraction ≤ 7.5% 90 95

Fraction ≤ 5% 95 95

Table 2: JPEG/JPEG2000 QP values

QP values according to the fraction of anchor frames to maximize

video quality while guaranteeing bitrate smaller than that of the

per-frame encoding (§8). When the fraction of anchor frames be-

comes higher than 10% and 15%, JPEG and JPEG2000 cannot meet

the bitrate constraint, respectively.

Content Method (#blocks,
#channels)

Fraction of
anchor frames

Chat

Per-frame 8, 24 -

Selective 8, 32 25%

GTA

Per-frame 8, 20 -

Selective 8, 32 15%

LoL

Per-frame 8, 20 -

Selective 8, 32 20%

Fortnite

Per-frame 8, 10 -

Selective 8, 32 15%

Valorant

Per-frame 8, 20 -

Selective 8, 32 15%

Minecraft

Per-frame 8, 10 -

Selective 8, 32 15%

Table 3: Baseline configurations

Baseline configuration. Table 3 illustrates the configurations of
the per-frame and selective baseline that achieve a similar quality as

NeuroScaler (average ΔPSNR=0.215 dB). We set #blocks, #channels,

and the fraction of anchor frames as 8, 32, and 7.5% for NeuroScaler,

respectively. The baseline configurations vary across contents be-

cause each has a different amount of scene complexity and temporal

redundancy, which affects the gains of a super-resolution DNN and

selective inference, respectively.

C ADDITIONAL RESULTS

Instance type Numbers
(per 100 streams)

Per-frame (SW) g4dn.12xlarge 100

Per-frame (HW) g4dn.12xlarge 100

Selective (SW) g4dn.12xlarge 50

Selective (HW) g4dn.xlarge 100

NeuroScaler g4dn.xlarge 34

Table 4: Cost-effective settings

Original Per-frame SR Key+Uniform SR NeuroScaler SR

34.27 86.42 85.71 86.57

Table 5: Video quality in VMAF
(Content: League of Legends [19])

CPU specification #threads Throughput (fps)

Intel i9-9900K

(3.6 GHz)

1 89.4

2 140.0

4 184.992

Table 6: Decoding throughput (Desktop-class CPU)

Method Inference Encoding

Per-frame (SW) 4 GPU 16 vCPU

Per-frame (HW) 4 GPU 1 GPU

Selective (SW) 0.92 GPU 16 vCPU

Selective (HW) 0.92 GPU 1 GPU

NeuroScaler 0.33 GPU 0.25 vCPU

Table 7: Resource usage per stream
(A single vCPU can run a single CPU thread [14].)

Process Cost-effective Latency-sensitive

Instance g4dn.xlarge g5.2xlarge

Decode 10.0ms (± 4.95ms) 5.61ms (± 4.04ms)

Schedule 0.155ms (± 0.024ms) 3.57ms (± 5.51ms)

Infer 106ms (± 26.5ms) 41.5ms (± 8.41ms)

Encode 18.0ms (± 0.790ms) 12.6ms (± 0.32ms)

Queue 557ms (± 305ms) 27.4ms (± 20.8ms)

E2E 669ms (± 338ms) 90.8ms (± 25.8ms)

Table 8: NeuroScaler’s latency analysis
(average ± standard deviation)

6.45
6.5

6.55
6.6

0 30 60 90 120PS
N

R
 g

ai
n

(d
B

)

Scheduling interval (#frames)
Figure 29: Increasing the scheduling interval results in

higher quality gain. The x-axis represents the scheduling
interval in # frames. The experiment was conducted with a
video [16], which GOP is 120. 10% of frames were selected as

anchor frames.

809

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Yeo et al.

(a) Original (720p) / PSNR: 32.3 dB (b) NeuroScaler (2160p) / PSNR: 39.9 dB

Figure 30: League of Legends video snapshot (Source: Youtube [19])

(a) Original (720p) / PSNR: 33.2 dB (b) NeuroScaler (2160p) / PSNR: 38.3 dB

Figure 31: Valorant video snapshot (Source: Youtube [21])

(a) Original (720p) / PSNR: 35.2 dB (b) NeuroScaler (2160p) / PSNR: 42.8 dB

Figure 32: Just Chatting video snapshot (Source: Youtube [16])

810

NeuroScaler: Neural Video Enhancement at Scale SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

D ARTIFACT APPENDIX
Abstract
NeuroScaler’s artifact contains the source code, scripts, and doc-

umentation, which is hosted as a Github repository. The repos-

itory provides detailed instructions to build, run, and evaluate

NeuroScaler.

Scope
The artifact allows to validate the end-to-end processing improve-

ment and quality gain, shown in Figure 13(a) and 13(b), respectively.

One can use the artifact for their own DNN and video or extend

the artifact to integrate with their video streaming applications.

Contents
The artifact provides the source code, scripts, and documentation

to run NeuroScaler. It provides how to NeuroScaler in three steps:

1) generate datasets (e.g., videos, DNNs), 2) measure the end-to-end

throughput, and 3) measure the video quality.

Hosting
NeuroScaler is available on Github, which URL is https://github.

com/kaist-ina/neuroscaler-public. The artifact is provided in the

main branch of the repository.

Requirements
The following sofware/hardware are required to run NeuroScaler:

◦ Operating system: Ubuntu 16.04 or higher versions

◦ Software: Python 3.6 or higher versions (Required package:

xlrd), Docker, NVIDIA Docker

◦ Hardware: NVIDIA GPUs

811

https://github.com/kaist-ina/neuroscaler-public
https://github.com/kaist-ina/neuroscaler-public

	Abstract
	1 Introduction
	2 Background
	3 Challenges
	3.1 Expensive End-to-end Enhancement
	3.2 Inefficient Resource Scheduling

	4 NeuroScaler Overview
	5 Anchor Scheduler
	5.1 Zero-inference Anchor Frame Selection
	5.2 Anchor-aware Resource Management

	6 Anchor Enhancer
	6.1 Hybrid Video Encoding
	6.2 Optimizing GPU Context Switching

	7 Implementation
	8 Evaluation
	8.1 End-to-End Performance
	8.2 Component-wise In-depth Analysis
	8.3 Scalability

	9 Discussion
	10 Related work
	11 Conclusion
	Acknowledgments
	References
	A Design Details
	B Experimental Settings
	C Additional Results
	D Artifact Appendix

