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Abstract

Implicit neural representation (INR) has emerged as a new
data representation for compressing videos and now shows
on-par performance with the conventional codecs. The next
challenge in the field is to make INR scalable for its prac-
tical use. Existing works realize this by utilizing small INR
models to scale for long and high-resolution video, which
achieves better encoding and decoding speeds. However,
they fail to fully exploit the temporal nature of video data
when encoding it into multiple separate INRs across time,
which leads to sub-optimal compression efficiency. In this
work, we propose NerVast, a new encoding scheme for video
INR, that improves compression efficiency while still enjoy-
ing the low computation and transfer costs of small INR
models. When a video is represented in separate INR seg-
ments, NerVast effectively reduces the total volume required
for representation by sharing the parameters between mod-
els during encoding. Without expensive training, NerVast
selects the most efficient parameters to share. Then it jointly
trains both shared and non-shared parameters in a way that
minimizes the quality drop imposed by sharing. While main-
taining real-time decoding speed (> 30 fps), NerVast pro-
vides better compression (39.9 % reduction in parameters
on average) compared to the compute-efficient INR mod-
els. In other words, NerVast is better in encoding quality
(1.57 dB higher in PSNR) with the same bitrate.

1. Introduction

Implicit neural representation (INR) is a novel data repre-
sentation technique that has recently gained attention for
its ability to represent complex signal data, including au-
dio [32], images [10, 11], and even 3D scenes [3, 28]. INR
represents the data as a form of learnable function that takes
a specific coordinate as input and returns the target value of
representing data (fθ(·) : Rn → Rm). This technique also
shows great potential in video representation. NeRV [5] re-

*Co-corresponding authors.

constructs video using INR with acceptable visual quality,
while other recent works [6, 17, 21] achieve comparable or
even better compression performance than existing codecs
such as H.264 [42] and HEVC [36].

In addition to its compression performance, another im-
portant requirement of INR for its real-world deployment
is the ability to scale to large data. In the case of video,
using a large monolithic INR model to compress a long se-
quence video is impractical because it translates to higher
computation costs in both encoding (training) and decod-
ing (inference); especially, it leads to unacceptable frame
rates for decoding (< 30 fps) even with the powerful GPUs.
The approach also hinders its use in streaming scenarios as
reconstructing a single video frame with INR requires an
entire model to be transferred [7].

To address the issue, one straightforward approach is
to utilize multiple small INR models, each representing a
small part of the whole data. This design philosophy is ac-
tively being adopted in INR for static 3D scenes to success-
fully model massive urban scenes [37, 39] or speed up the
inference [30, 31].

Likewise, we can split the video into multiple small INRs
across time to get the same practical benefit for long videos.
However, unlike static 3D scenes, videos bear strong tem-
poral redundancy. Naively encoding adjacent video chunks
over time into independent models fails to exploit this
unique characteristic, which may lead to sub-optimal com-
pression efficiency. For example, imagine a video where
the same objects or background scenery repeatedly show
up over a long time, but the video is encoded into multiple
independent INRs across time. This can result in redundant
parameters having similar weights between models, which
implies that there is room for further reduction of the to-
tal number of parameters while still achieving comparable
quality. Recent work named NIRVANA [26] also points out
that temporal redundancy is overlooked when a video is rep-
resented into multiple INRs. It proposes a new model archi-
tecture that speeds up the encoding and decoding time by
leveraging temporal redundancy and multiple smaller mod-
els. However, leveraging the temporal nature of video to
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Figure 1. Overview of NerVast. Our work enables efficient scal-
ing with small computation and transfer costs with better compres-
sion efficiency.

achieve better compression efficiency is an unexplored op-
portunity.

In this paper, we propose NerVast, a new encoding
method that compresses a video into multiple small INR
models by exploiting the strong temporal redundancy in
the video. Our goal is to enhance the compression ef-
ficiency while taking advantage of the low computation
cost and transfer overhead of small INRs, without modi-
fying the model architecture itself. To achieve this, Ner-
Vast transforms repetitive information present in multiple
video chunks into shared parameters across small INR mod-
els as shown in Fig. 1. Specifically, it carefully selects
the sharable parameters and encodes them into the same
weights to make them contain the long-term redundancy in
a video. This strategy effectively reduces the overall param-
eter count required to represent the same video. Addition-
ally, NerVast effectively handles the remaining non-shared
parameters to express the residual information of each video
chunk for better quality gains.

The approach is promising but careful consideration
must be given to the following factors: 1) finding the ex-
tent of redundancy between video chunks that can be effi-
ciently modeled using shared parameters, 2) identifying the
parameters worthy of selection for sharing.

To address the first factor, we leverage the threshold-
based scene change detection method to define a parameter-
sharing window, which groups video chunks that will share
the same parameter. For the second factor, we introduce
Fisher’s information score as a metric to select which pa-
rameters to share within the window. Furthermore, when
training multiple small INRs for encoding, it is crucial to
strike a balance between capturing temporal redundancy
among video chunks and accurately representing each video
chunk. Our proposed approach effectively addresses this
challenge by employing partial joint training of INR.

In summary, the contribution of our work is as follows:
1) NerVast demonstrates how exploiting the strong temporal
redundancy inherent in videos can enhance the compression
efficiency of the video when it is represented in small INR
models. 2) NerVast enables efficient scaling to large video
with small computation and transfer costs. 3) NerVast intro-

duces the new encoding scheme for multiple small INRs to
select and learn shared parameters, significantly enhancing
the compression efficiency.

2. Background & Related Work
Implicit Neural Representation is an emerging paradigm
for data representation using neural networks. In particular,
coordinate-based neural representation techniques [28, 32]
have gained significant attention, which takes input coor-
dinates and outputs the corresponding target data value at
that position (e.g.,f(x, y, t) = (r, g, b)) to represent com-
plex signals such as audio [32], images [10, 11], and even
3D scene [3, 28]. In the domain of video compression, re-
cent works such as [5, 6, 13, 14, 20, 21, 23, 26] have shown
comparable or even better compression performance than
conventional codecs. To represent large data such as high-
resolution or long video sequences, these works can work
by increasing the number of parameters (i.e., investing more
bits). However, simply just enlarging their models propor-
tional to the data size faces practical issues. Fig. 2 shows the
impracticality of using the large monolithic INR model1: as
the video length extends, the required computation (GMac)
drastically increases which leads to unacceptable decoding
fps even on a high-end GPU (NVIDIA RTX 3090). This
also leads to significant startup delay when used in video
streaming because the entire model should be downloaded
to access a single frame.
Scaling INR for Large-Scale Data. To address the chal-
lenges of scaling INR, utilizing small INR has been actively
adopted in INR for image reconstruction [18] and static 3D
scenes [30, 31, 37, 39]. These works spatially partition the
data into multiple small INRs and have proven effective
for static domains—ENRP [18] uses independent models
on image patches, KiloNeRF [31] and Rebain et al. [30]
split 3D scenes into chunks for faster rendering, and Mega-
NeRF [39] and Block-NeRF [37] scale to city-sized data. A
similar chunking strategy applies to video by slicing along
the time axis: splitting a long clip into fixed-length seg-
ments keeps per-segment compute and startup delay con-
stant (Fig. 2). However, treating each segment as an in-
dependent model discards temporal redundancy and limits
compression gains. NIRVANA [26] has attempted to uti-
lize this redundancy to reduce the encoding time of video,
but not for compression, and the compression efficiency re-
mains the same. In contrast, NerVast combines chunk-wise
partitioning with lightweight parameter sharing, exploiting
inter-chunk similarity to improve compression efficiency
without incurring additional training or inference overhead.
Parameter sharing is a technique that allows sharing of

1We use NerV [5] for the experiment. To preserve the performance in
quality, we increase the model size proportional to the video length main-
taining 5 Mbps (typical HD video bitrate). To measure the startup delay,
we assume 10 Mbps bandwidth.
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Figure 2. The impracticality of a large monolithic INR model for its real-world deployment.

parameters between different tasks or models to leverage
inter-task knowledge [8, 34, 40, 45, 46]. Furthermore, pa-
rameter sharing can be leveraged to achieve greater param-
eter efficiency. In the neural-enhanced video streaming,
SRVC [19] and [24] have utilized parameter sharing be-
tween chunk-specific super-resolution networks to reduce
the number of parameters required for streaming. However,
these approaches are specific to the super-resolution task
and require sequential training of the models with param-
eter freezing, limiting the possibility of better optimization
of the INR video regression task.

In neural representation, the number of parameters di-
rectly translates to the size of the data representation in bits.
Therefore, recent works adopt parameter sharing for effi-
cient and compact data representation. For instance, [11] in-
troduces modulation networks (∼1 K parameters) as image-
specific (32x32 CIFAR 10) networks while sharing the base
network weights (∼3.8 M parameters) trained on a general
dataset. This approach directly minimizes the required data
volume for representing each specific image. TINC [43]
proposes a layer-wise parameter sharing architecture that
utilizes hierarchical tree-based sharing to improve represen-
tation accuracy, while [7] shares executable sub-networks
to represent different levels of data quality. Recent INR-
focused approaches such as Parameter-Reuse-INR [12],
SIEDD [2], and SR-NeRV [16] extend this idea. How-
ever, these methods either reuse entire layers [12], rely
on a specialized global encoder paired with per-segment
decoders [2], or share discrete embedding tokens across
frames [16], all of which require specialized architectural
components and do not explicitly exploit inter-chunk simi-
larity. In this work, we study parameter sharing as a means
to capture and share the long-term redundancy in a video.

3. Method
Our goal is to enhance the compression efficiency of video
neural representations when a video is represented in mul-
tiple models for its scalability and data transfer. In other
words, we target to reduce the overall volume of the video
neural representation with a minimal quality drop in such
setting. To achieve this, we start from segmenting a video
V into N separate chunks (V = {Cn}Nn=1), where each

chunk consists of a fixed number of frames.2 Each video
chunk will eventually be encoded to its corresponding small
INR model. To reduce the total volume (i.e., the number of
parameters) of INR, we take parameter sharing as our high-
level approach.
Problem definition. Given video chunks C1, C2, · · ·CN ,
let the corresponding neural representation model param-
eter θ1, θ2, · · · , θN . θjm indicates the j’th parameter in
m’th chunk model. The models have the identical size of
S = ||θ||0, and we define κ which denotes the target portion
of shared parameters between each chunk. Simply, when κ
is applied, it reduces κ × S of size for each model starting
from the second chunk, which accomplishes our first goal:
reducing the total volume (by κ (n− 1)×S). Next, to min-
imize the quality drop that may be imposed by sharing, we
formulate our objective as follows:

minθ

∑
n

Ln(Cn; θn), s.t. ||θl−θm||0 ≤ (1−κ)·||θ||0 , ∀ l,m

(1)
where Ln(Cn; θn) is loss of n’th chunk model for video

chunk Cn under parameter θn. The objective minimizes the
quality drop, by minimizing the joint loss.
Challenges & approach. To represent a video V =
{Cn}Nn=1, it requires overfitting model parameters θn to its
given video data chunk Cn. This results in distinct parame-
ter values across models (θm ̸= θn) where we cannot ensure
at least κ portion of parameters that have the “identical” pa-
rameters to be shared. As a result, we need a way to ex-
plicitly control the parameter values 1) to force the shared
parameters to be updated towards the same values, and 2)
to make the non-shared ones trained towards the values that
best represent their corresponding model’s assigned data
Cn. Similarly, a number of works utilize a method called
“Masking” to explicitly distinguish and control the parame-
ter while training but for different purposes: they select and
control parameters to make them zero for pruning [9, 29] or
freeze their values for transfer learning [15, 35, 44].

Inspired by the idea, NerVast first creates a mask M =
{mi|mi = IShared(i)}, where IShared(i) = 1, if θim = θil

2This baseline setting is commonly employed in INR works that ad-
dress scalability. Typical video streaming applications (e.g., YouTube) use
4-10 second video chunks.
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Figure 3. Overall workflow: When multiple video chunk data is given, (1) NerVast decides the parameter sharing window that includes
temporally adjacent similar chunks, (2) finds the sharing mask within the parameter sharing window. (3) Finally, it trains multiple models
to find the optimal weights for video representation under the new constraint of parameter sharing.

to indicate whether the i’th parameter is shared. Then, it
trains the parameter shared models θ1, θ2, · · · , θn with the
chosen mask. The approach still leaves the following ques-
tions for each process: 1-1) For how long in a video should
we share the parameters across models? Using a single
sharing mask throughout the whole video sequence is not
reasonable, and we define a parameter-sharing window in
§3.1. 1-2) Which parameters should we select as our shar-
ing mask? Careful selection of the shared parameters is nec-
essary and we provide an effective selection method in §3.1,
which requires just a single iteration for calculating gradi-
ents. 2) How should we train (encode) the shared parame-
ters & non-shared ones? We propose a partial joint training
algorithm (§3.2) that effectively satisfies our objective goal
(1). The overall workflow of NerVast is illustrated in Fig. 3.

3.1. Shared Parameter Selection.
Param-sharing window. In scenarios where the content
within a video dynamically changes over time, the use of a
single sharing mask for an extended duration becomes im-
practical. To address this challenge, it is necessary to adapt
the sharing mask as the redundancy of videos changes.
We propose a simple technique that clusters video chunks
based on explicit data relationships between frames. When
a video requires encoding, we establish a chunk clustering
window using the threshold-based scene change detection
method commonly employed in video codecs [41]. We
measure the difference of neighboring frames and select
frame pairs that show significant difference values from ad-
jacent difference values. In addition, to avoid excessively
short clusters, we apply a minimum bound for window
length. By adopting this method, we group video chunks to-
gether that exhibit redundancy with negligible overhead, en-
abling the shared parameters within each cluster to achieve
enhanced compression efficiency (§4.5).
Parameter selection. Once the parameter-sharing window
is determined, the next essential step is to decide the sharing
mask M . However, optimal parameter selection involves
tracing all possible parameter combinations until the end of
the training, which is infeasible to accomplish. To address

this challenge, we propose the use of Fisher information ap-
proximation (Eq. 2) as a metric for selecting shared param-
eters, bypassing the need for exhaustive empirical training.

F̂θ =
1

N

∑
n

Ey∼pθ(y|xi)(∇θlogpθ(y|xi))
2 (2)

Fisher information can represent the influence of parame-
ter changes on the model output, to be utilized in network
pruning [25, 38], information measure [1] or deciding up-
date parameter in transfer learning [35]. To minimize the
possible quality drop due to our parameter sharing con-
straint, we selected the parameters that least affect the loss
according to the Fisher information score to minimize qual-
ity degradation. As a result, it can be leveraged as a vi-
able proxy metric for capturing the redundancy within video
chunks. In practice, we compute approximated Fisher infor-
mation [35] for the parameter by calculating the gradient of
the whole dataset and employing it for sharing mask selec-
tion. As shown in §4.5, our parameter selection approach
using Fisher information achieves a minimal quality drop
compared to various other proxy metrics.

3.2. Encoding Procedure
Problem definition & objective. After deciding the
parameter-sharing mask, our goal can be narrowed down
to maximize the quality under the given mask M . Thus the
problem changes to minimize objective in equation 1 with
changed constraint, θim = θil , if M i = 1. To solve this
problem with the gradient descent algorithm, we calculate
the gradient of each INR parameter, θm as follows:

∇θi
m
(
∑
n

Ln(Cn; θn)) =
∑
n

∇θi
m
Ln(Cn; θn) (3)

For shared parameters, we can derive the above gradient
as ∇θi

m
Ln(Cn; θn) = ∇θi

n
Ln(Cn; θn). This is because

of the mask constraint forces that θim = θin for shared
parameters. On the other hand, for non-shared parameter
∇θj

m
Ln(Cn; θn) = 0 for n ̸= m since chunk specific pa-

rameter does not affect the other chunks models’ output.



Finally, we can reconstruct the gradient descent algorithm
for a partial parameter shared model as like below:

θim ← θim − α
∑
n

∇θin
Ln(Cn), θjm ← θjm − α∇

θ
j
m
Lm(Cm)

(4)
where θim, θjm are shared and non-shared parameters in

m’th chunk model and α is learning rate. This can be in-
tuitively explained, that the shared parameter is updated to-
ward minimizing joint loss to capture the common informa-
tion across video chunks, while the non-shared parameters
are updated towards separate directions that are optimal for
chunk-specific loss. We can obtain

∑
n∇θi

n
Ln(Cn) with

forward & backward each chunk models and accumulate
gradients. By incorporating joint loss for shared parameters
and chunk-specific loss for non-shared parameters, we ef-
fectively minimize the total loss associated with parameter
sharing across multiple INRs.
Partial joint training algorithm. NerVast employs Algo-
rithm 1 to facilitate the partial joint loss above to train the
multiple INRs. The algorithm first iterates over the video
chunks and calculates the parameter gradients through for-
ward & backward propagation (lines 3-4). Throughout the
iteration, the algorithm updates the non-shared parameters
that embrace the specific features of each video chunk (line
5). Simultaneously, it accumulates the gradient for the
shared parameters until the completion of the iteration (line
6). At the end of the iteration, the accumulated gradient for
the shared parameter is updated accordingly (line 8).

Algorithm 1 Partially joint training

Require: θ, C,M
θ = {θ1, θ2 · · · θn}; multiple INRs for each video
chunk, C = {C1, C2 · · ·Cn}; set of video chunks, M ;
mask for shared parameters

1: Randomly initialize θ
2: Synchronize θshare = M ⊙ θm
3: for Ci ∈ C do
4: calculate ∇θiL(Ci; θi) ▷ Calculate chunk-wise

gradient
5: θi ← θi − α · (1−M)⊙∇θiLi(Ci; θi) ▷ Update

gradient for non-shared parameters
6: shared grad += M ⊙∇θiLi(Ci; θi) ▷

Accumulate gradient for shared parameters
7: end for
8: θshare ← θshare − α · shared grad ▷ Update

accumulated gradient
∑

n∇θshare
n

Ln(Cn; θn)

By using the partial joint training, NerVast achieves su-
perior video representation quality compared to SRVC [19],
a method that solely adjusts the non-shared parameters after
freezing the shared parameters (§4.5).

4. Evaluation
4.1. Evaluation Settings
Datasets. We use the sampled frames (720x1280, 132
frames, 5sec) from “Big Buck Bunny” video and UVG
frames (1080x1920, 3900 frames, 2 mins) from UVG
dataset [27] which is used in NeRV [5], ENeRV [23]
and HNeRV [6]. In addition, to show NerVast can ef-
fectively support long videos, we use “Elephant Dream”
(1080x1920, 1440 frames, 1min) from the Xiph dataset.
For long video evaluation, we also sample more HD frames
from “Big Buck Bunny” video (1080x1920, 7200 frames, 5
mins).
Neural representation models. We utilize medium-sized
NeRV [5], ENeRV [23], and HNeRV [6] models of ∼6M
parameters unless otherwise noted. We train each model
for 300 epochs with a learning rate of 5e−4 and a cosine
annealing learning rate scheduler, following the original pa-
pers [5, 6, 23].
Baselines. Previous studies [18, 26, 31, 37] utilize multiple
small independent models to improve scalability. We con-
sider this approach as a baseline and name it “Naive-split”.
Unless otherwise noted, we chunk the video into 5-second
segments according to the chunk size for HTTP adaptive
streaming [33], and use an INR model (chunk model) for
each chunk. Specifically, we use 12 chunks for “Elephant
Dream” where each chunk model contains 120 frames, con-
sidering the “Elephant Dream” is 24fps (120 frames = 24fps
x 5sec). Similarly, 26 chunk models are used for the UVG
videos, and 60 models for “Big Buck Bunny”.

4.2. Compression Efficiency of NerVast
Effectiveness across diverse video durations. Table 1
shows that NerVast consistently achieves substantial com-
pression across videos of varying lengths, from short clips
such as Shake (300 frames, from UVG) to long sequences
such as Big Buck Bunny (7200 frames). Across all datasets,
NerVast reduces parameter volume by 35–46% compared
to the naive-split baseline, while maintaining nearly identi-
cal reconstruction quality (within 0.2dB PSNR and compa-
rable MS-SSIM). These consistent gains highlight that the
proposed parameter-sharing strategy effectively removes re-
dundancy and adapts well regardless of video duration by
encoding temporally repetitive information.
Effectiveness across videos of diverse dynamics. To ex-
amine whether motion dynamics influence compression ef-
ficiency, we compare two representative cases: Honeybee
(low temporal variation) and Jockey (high temporal vari-
ation), as shown in Table 5. Despite large differences in
motion dynamics, NerVast achieves over 42% Bjøntegaard
Delta Bit Rate (BD-Rate) [4] reduction in both cases, with
slightly larger gains observed for the more static Honey-
bee video. In contrast, BD-PSNR values differ more sub-



Dataset Method Volume (# of params) PSNR MS-SSIM
Shake

(300 frames)
Naive-split 13.14M 34.96 0.9513

NerVast 8.54M (↓35%) 34.76 0.9516
Elephant Dream
(1440 frames)

Naive-split 78.8M 39.64 0.9847
NerVast 42.7M (↓45.8%) 39.57 0.985

UVG dataset
(3900 frames)

Naive-split 170.8M 34.60 0.95
NerVast 108.4M (↓36.5%) 34.50 0.95

Big Buck Bunny
(7200 frames)

Naive-split 394.2M 38.11 0.981
NerVast 246.4M (↓37.5%) 38.99 0.984

Table 1. Compression over different videos. Volume, quality of Naive-split
and NerVast over videos with different durations. NerVast compresses total vol-
ume by 36% with a marginal quality drop, or even better quality compared to
the Naive-split. Additional encoding time (7%) exists due to our joint training
algorithm, while GMac and decoding time are identical to the baseline.

Method PSNR Compression Rate
Naive-split (6M) 34.60 0%
Naive-split (3M) 32.57 48.8%
NerVast (κ=0.5) 34.50 37.5%
NerVast (κ=0.7) 34.14 52.5%
NerVast (κ=0.9) 32.78 67.5%

Table 2. Compression over different κ. The trade-
off between volume and quality according to the dif-
ferent κ values over the UVG dataset. Larger κ indi-
cates more shared parameters for a high compression
rate, at the expense of lower quality.
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Figure 4. Performance of NerVast with different NeRV vari-
ants on the Big Buck Bunny dataset. Colors denote methods
and marker shapes denote base models (NeRV[5], E-NeRV[23],
HNeRV[6]). NerVast consistently improves video quality while
reducing total model volume, demonstrating seamless applicabil-
ity across architectures.

stantially across videos, as the absolute quality scale in-
herently depends on video content. This indicates that the
proposed parameter-sharing strategy adapts robustly across
both static and dynamic scenarios.
Effectiveness across NeRV variants. Fig. 4 demonstrates
the applicability of NerVast to three different INR models:
NeRV, E-NeRV, and HNeRV, using the Big Buck Bunny
video as a test case. Across all variants, NerVast consis-
tently improves compression efficiency. Compared to the
“Naive-split (6M)” baseline that uses medium-sized chunks
(6M parameters each), NerVast achieves smaller model vol-
ume with negligible quality loss. Moreover, relative to the
“Naive-split (3M)” baseline that employs smaller chunks
with a parameter budget comparable to NerVast, our method
yields superior quality gains of +1.87dB to +3.74dB in
PSNR. These results highlight that NerVast is not only ef-
fective across different NeRV variants but also broadly ap-
plicable to future INR models.
Comparison with NIRVANA [26]. NerVast and NIR-
VANA pursue fundamentally different objectives: NerVast
explicitly targets compression efficiency through cross-
chunk parameter sharing, whereas NIRVANA aims to accel-
erate training (encoding) by sequentially fitting INR mod-

Metric Jockey HoneyBee

Temporal Information (Mean-avg.) 12.60 2.16
Temporal Information (Optical Flow) 4.25 0.15
BD-Rate [%] -42.26 -43.81
BD-PSNR [dB] 2.106 0.524

Table 5. Robustness of NerVast across static (HoneyBee) and
dynamic (Jockey) videos from the UVG dataset.

els. As shown in Table 3, NIRVANA achieves 34.71 dB
at 0.32 bpp, while NerVast reaches nearly identical quality
(34.50 dB) at only 0.10 bpp (↓67%), indicating far supe-
rior compression efficiency. While NerVast incurs higher
encoding time, this is essentially a one-time cost that can be
amortized, whereas compression efficiency directly affects
recurring storage and transmission costs. Accordingly, our
design places emphasis on reducing recurring costs, which
are more critical for practical downstream deployment.

4.3. Computation Analysis

NerVast trades a small, amortizable encoding overhead
for large compression savings while leaving decoding cost
(compute/fps) unchanged. Figure 6 compares total en-
coding time and decoding throughput for Monolithic and
Naive-split, and decomposes NerVast into three stages: 1)
param-sharing window discovery, 2) parameter selection,
and 3) partial joint training. Relative to Naive-split, NerVast
requires only a marginal increase in encoding time to reach
the same final quality ( +7.5%: 30.60 s vs. 28.44 s), whereas
the monolithic model is far heavier (54.9 s) and decodes
much slower (≈17.7 fps vs. ≈48 fps). In the breakdown,
chunk model training accounts for most of the overhead,
with window discovery (0.3%) and gradient accumulation
(5%) contributing smaller shares. Despite a modest 7% in-
crease in encoding time, NerVast delivers much higher com-
pression (≈48%) with no impact on decoding speed, which
matters for repeated delivery.
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Figure 5. Qualitative comparison between NerVast and Naive-split.

Method PSNR (dB) BPP

SIREN 27.20 0.28
NIRVANA 34.71 0.32
NerVast (Ours) 34.50 0.10 (↓67%)

Table 3. Compression efficiency compared
with SIREN [32] and NIRVANA [26].
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Figure 6. Detailed analysis of encoding time. Despite a modest
7% increase in encoding time, NerVast delivers much higher com-
pression (↓48%) with no impact on decoding speed (48 fps) com-
pared to the naive-split. The monolithic model incurs the highest
encoding time and the slowest decoding.

(a) RD curve vs. model size (b) RD curve vs. video chunk length

Figure 7. RD curves for NerVast vs. Naive-split under (a) model
size (knob 1) and (b) chunk length (knob 2). NerVast achieves BD-
Rate reductions of 36.65% and 43.76%.

4.4. NerVast with Different Configurations

NerVast can adjust the bitrate of video with three key pa-
rameters: 1) the INR model size for each video chunk, 2)
the length of the video chunk, and 3) the parameter sharing
rate. We examine the performance of NerVast under vary-
ing configurations using the UVG dataset [27].
Model size. Fig. 7(a) reports compression results across
model sizes (knob 1) using static (HoneyBee) and dynamic
(Jockey) video from the UVG dataset. As the model size
increases, total bits per pixel (BPP) also increases. In
both static and dynamic scenarios, NerVast mitigates qual-
ity drops and achieves lower BPP than Naive-split, yielding
a better rate–distortion (RD) curve and average BD-Rate re-
duction of 36.65%.
Chunk length. Fig. 7(b) evaluates the effect of chunk
length (knob 2) on compression efficiency using static
(HoneyBee) and dynamic (Jockey) video from the UVG
dataset. We sweep lengths from 1.6 to 10 seconds per
video chunk. Shorter chunks require more models and thus
increase total BPP (with modest quality gains), whereas
longer chunks reduce BPP. Across both dynamic and
static settings, NerVast consistently outperforms Naive-
split. NerVast achieves reductions of 43.76% in BD-Rate
relative to Naive-split.
Sharing portion κ. NerVast offers the ability to control the
trade-off between total volume and quality by manipulat-
ing the parameter sharing portion, κ. Table 2 shows that a

larger value of κ leads to increased compression at the ex-
pense of quality degradation. Notably, when compared to
the Naive-split approach utilizing smaller model sizes for
compression, NerVast achieves superior quality (≥1.5dB)
even with a higher compression rate (52.5% ≥ 48.8%).

Furthermore, there is another noticeable trend in the ex-
periment. Videos with a stable nature, exhibiting more re-
dundant information between adjacent chunks (e.g., Hon-
eybee), demonstrate relatively smaller quality drop (∼
0.5 dB). Conversely, dynamic videos (e.g., Jockey) exhibit
larger differences between chunks, resulting in a higher
quality drop (∼ 2.6 dB). It shows that there is an oppor-
tunity to aggressively compress the video through NerVast
when a greater amount of redundancy exists.

In summary, our findings demonstrate that NerVast con-
sistently achieves higher compression efficiency than the
Naive-split method across various settings.
NerVast with pruning. Although NerVast reduces the
number of parameters, it is different from pruning. NerVast
shares parameters containing redundant information across
the chunk models, while pruning selects parameters con-
taining less information for each chunk model. Therefore,
the parameters to be pruned and shared parameters are or-
thogonal. NerVast is orthogonal to model pruning and can
be effectively combined with it. Fig. 8 demonstrates this.
Pruning significantly reduces the number of parameters of
NerVast with a very minor impact on quality (≤0.2dB drop
for 20% sparsity, similar to the original NeRV model).
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Figure 10. Partially joint training.

PSNR Volume

No-share 33.60 13.44M
Random 32.56 8.4M
Variance 32.63 8.4M
Difference 32.65 8.4M
NerVast 33.16 8.4M

Table 4. Sharing mask selection.

4.5. Ablation Studies

Parameter-sharing window. To see the impact of the
parameter-sharing window, we divided “Big Buck Bunny”
1440 frames into 45 frame-length video chunks and applied
the scene detection method. It results in configurations of
4 parameter sharing windows, each window consisting of
{4, 10, 10, 8} chunks. The utilization of the window yields
a significant quality improvement, resulting in an increase
of approximately 0.6 dB compared to sharing parameters
across the entire 32 chunks. By setting the window dif-
ferently, we effectively avoid sharing parameters between
chunks that are less likely to exhibit redundancy.
Sharing portion κ selection. As evidenced by the results
presented in Table 2, we observe a clear trend where the
quality decreases as the shared portion is increased to re-
duce the total volume. We further show the tradeoff by vary-
ing the value between 0 and 0.9, sweeping the entire space.
We report the quality drop from sharing compared to the
Naive-split. Fig. 9 shows that the shared fraction of approx-
imately 50 % yielded a negligible quality drop ≤ 0.1 dB,
while significantly reducing the total volume. Thus, we
used κ = 0.5 for our main evaluation. Notice that there
exists an opportunity to further reduce the total volume by
applying a larger κ, based on the user’s preference.
Sharing mask selection. Table 4 presents results, high-
lighting how different masking methods affect the overall
quality under the same sharing rate. Specifically, we con-
duct an experiment considering a sharing portion of approx-
imately 50% for the UVG Jockey dataset. The “Difference”
method [19, 22] observes how much the parameter changed
in a single epoch of training by calculating the absolute dif-
ference between the training steps. On the other hand, the
“Variance” selects parameters that exhibit the least variance
across models after single training epochs. Out of all the
selection schemes, our parameter selection method exhibits
the least amount of quality degradation (0.5 dB higher than
the second best) showing the effectiveness of NerVast mask-
ing method. The result proves that careful parameter selec-
tion is essential to mitigate the quality drop and maximize
the benefit of parameter sharing.
Partially joint training. In Fig. 10, we compare the train-
ing curve over time between “Sequential training” and our
“Partially joint training” under the same parameter-sharing
ratio κ. SRVC [19] sequentially trains chunk-wise neural

networks to exploit temporal redundancy in video datasets.
For the first chunk, both sequential training and joint train-
ing yield comparable quality because all parameters have
complete freedom to optimize. However, in subsequent
chunks, the quality of sequentially trained models decreases
due to the frozen parameters that were optimized using pre-
vious chunk data. Notice that NerVast’s training method
achieves the same quality much faster, and with the same
training budget, it yields 3 dB higher in quality than the se-
quential training. Sequential training involves freezing pa-
rameters to enforce identical values in specific portions of
the network. This freezing technique restricts the optimiza-
tion space within gradient descent and may not be well-
suited for the context of INR, where overfitting is desired
to achieve optimal compression performance.

5. Conclusion
In this paper, we point out the scalability challenges asso-
ciated with representing the video using neural represen-
tation. To overcome this problem, we introduce NerVast
that efficiently compresses videos into multiple small INRs.
By exploiting the strong temporal redundancy present in
videos, NerVast splits the video into multiple small INR
models and carefully selects shared parameters to capture
the redundancy across video chunks. First, NerVast de-
cides the parameter-sharing window using a scene change
detection method. Next, it identifies the suitable parame-
ters, employing Fisher information score. Finally, through
partial joint training, it achieves the balance between captur-
ing temporal redundancy and accurately representing each
video chunk. We demonstrate significant gains in compres-
sion by reducing the parameter count required for repre-
sentation while maintaining the video quality compared to
Naive-split method. Consequently, NerVast enables com-
pact scalable video INR to the large video with small com-
putation and transfer costs.
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